

OCOPOMO

Open Collaboration in Policy
Modelling

D 4 . 2 S Y S T E M A N D U S E R

D O C U M E N T A T I O N

C : U S E R M A N U A L O N P O L I C Y

M O D E L L I N G A N D S I M U L A T I O N

T O O L S

Document Full Name OCOPOMO_D4.2-C_DRAMS-UserManual.docx

Date 03/04/2013

Work Package WP4, WP6

Lead Partner Intersoft, SMA

Authors Ulf Lotzmann, Ruth Meyer

Document status v1.00 FINAL

Dissemination level PUBLIC (PU)

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 2 of 56

Document Log

Version Date Comment Author

0.0 08/08/2011 Initial version Ulf Lotzmann

0.1 01/11/2011 First preview version Ulf Lotzmann

0.2 02/02/2012
Syntax description completed,

further additions in section 3
Ulf Lotzmann, Ruth Meyer

0.3 02/04/2013
Major revision, split up in user

and system documentation
Ulf Lotzmann

0.4 03/04/2013 Correcting text and formatting. Ulf Lotzmann

1.0 04/04/2013 Consolidation and finalisation Ulf Lotzmann

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 3 of 56

TABLE OF CONTENTS

1. INTRODUCTION ... 5

2. DRAMS OVERVIEW ... 6

2.1. FUNCTIONALITY OUTLINE ... 6

2.2. RULE SCHEDULING MECHANISM .. 9

2.3. TRACEABILITY AND LINKS ... 12

3. USING DRAMS .. 13

3.1. USER ROLES ... 13

3.2. USER INTERFACE .. 14
3.2.1. Main Window.. 15

3.2.1.1. Data Dependency Graph ... 16
3.2.1.2. Rule Dependency Graph ... 17
3.2.1.3. Trace of Rule Schedule ... 17

3.2.2. Console Window ... 18
3.2.3. Output Writer Windows ... 19

3.2.3.1. Log output .. 19
3.2.3.2. Model Explorer ... 19

3.3. INTEGRATION IN REPAST MODELS ... 20

4. DRAMS LANGUAGE SYNTAX .. 21

4.1. STRUCTURE OF DEFINITION FILE .. 21
4.1.1. Type definitions ... 21
4.1.2. Fact templates.. 22
4.1.3. Facts .. 22
4.1.4. Rules ... 23
4.1.5. Clauses .. 23
4.1.6. Accessing slots of fact variables... 24
4.1.7. Lag modes ... 24
4.1.8. Slot compare operators .. 26
4.1.9. Mathematical expressions .. 27
4.1.10. Fact names... 29
4.1.11. Output writing facility ... 31

4.1.11.1. Log writer ... 32
4.1.11.2. Output writer... 33

4.2. LHS CLAUSES ... 34
4.2.1. Fact base retrieval .. 34
4.2.2. Fact base queries ... 36
4.2.3. Exists .. 37
4.2.4. Composite of inner LHS clauses .. 38
4.2.5. Not operator .. 39
4.2.6. Foreach operator .. 39
4.2.7. Bind operator ... 40
4.2.8. Comparative operators ... 40
4.2.9. List operators ... 41
4.2.10. Set operators .. 42
4.2.11. Accumulator .. 43

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 4 of 56

4.2.12. Deftype components .. 44
4.2.13. Symbol generator... 45
4.2.14. Print .. 46
4.2.15. Call ... 46
4.2.16. Agent birth and death ... 47
4.2.17. Breakpoint ... 47

4.3. RHS CLAUSES... 48
4.3.1. Fact assertion ... 48
4.3.2. Fact retraction .. 48
4.3.3. Output writing ... 49
4.3.4. Print .. 50
4.3.5. Call ... 50
4.3.6. Agent birth and death... 51
4.3.7. Breakpoint ... 51

5. REFERENCES ... 52

6. ANNEXES ... 53

6.1. DRAMS SYNTAX KEYWORDS ... 53

6.2. FREQUENTLY ASKED QUESTIONS ... 55
6.2.1. How can output writers be used?.. 55
6.2.2. What should be noted when using the DRAMS Java API? ... 56

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 5 of 56

1. INTRODUCTION

This user manual describes the usage of tools included into the Simulation Environment module of the
integrated OCOPOMO toolkit. These tools provide a means for construction of declarative agent-

based policy models, their encoding, debugging, and deployment to the executable simulation

environment.

DRAMS, the Declarative Rule-based Agent Modelling System, provides the necessary rule engine

functionality to enable modellers in the OCOPOMO project to develop declarative agent-based

simulation models as discussed in [1].

While this document covers aspects of using DRAMS and the DRAMS language, information about
employing DRAMS with agent-based simulation tools, API details or adding new features to the

DRAMS core is given in a separate system documentation provided in D4.2-SD-3 System

Documentation of DRAMS.

Structure of the here presented user manual is as follows:

 Section 2 gives an overview on features and peculiarities of DRAMS. In particular the subsection

2.2 provides useful information about the implemented scheduling algorithm.

 Section 3 is aimed at giving model developers a reference on all important topics. This includes

instructions for installing DRAMS, for integrating DRAMS in java-based models and, finally, for

using DRAMS.

 Section 4 provides a syntax description for the declarative language.

Other information related to the installation, maintenance, connection to the whole OCOPOMO

platform, and technical details of the here-presented tools of the Simulation Environment module can

be found in the main text of the D4.2 deliverable, as well as in D4.2-SD-3 System Documentation of
DRAMS.

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 6 of 56

2. DRAMS OVERVIEW

2.1. FUNCTIONALITY OUTLINE

A rule engine is a software system that basically consists of:

 A fact base, which stores information about the state of the world in the form of facts. A fact

contains a number of definable data slots and some administrative information (time of creation,
entity that created the fact, durability).

 A rule base, which stores rules describing how to process certain facts stored in fact bases. A rule

consists of a condition part (called left-hand side, LHS) and an action part (called right-hand side,

RHS).

 An inference engine, which controls the inference process by selecting and processing the rules

which can fire on the basis of certain conditions. This can be done in a forward-chaining manner
(i.e. trying to draw conclusions from a given fact constellation) or backward-chaining manner (i.e.

trying to find the facts causing a given result).

DRAMS is designed as a distributed, forward-chaining rule engine. It equips an arbitrary number of
agent types with type-specific rule bases and initial fact base configurations. For each agent type, an

arbitrary number of agent instances (objects) with individual fact bases can be created. All individual

fact bases are initialized according to the agent type configuration, but may be adapted individually.

There is also a shared global fact base, containing “world facts”, e.g.

 a (permanently updated) fact reflecting the current simulation time,

 one fact for each agent instance present in the “world”, providing some information (e.g.

reference ID) about the agent,

 model-specific environmental data, and

 (public) inter-agent communication messages.

Heart of the inference engine is the rule schedule, an algorithm deciding which rules to evaluate and

fire at each point of time. The pseudo code in Figure 1 shows the basic structure of a possible rule
schedule algorithm. In order to decide (for each fact base configuration without recompiling the rule

base) which rules to evaluate for which agent instances, the scheduler relies on a data-rule dependency

graph. This is constructed once from all specified rules and initially available data; the graph does not
change unless rule bases are modified. As to detecting fact base modifications, the schedule keeps

track of all (writing) fact base operations. A more detailed description of this method is given in the

following section.

At each point of time, the rule processing within an agent (intra-agent process) is performed for all

possible rules. At first, the conditions of a rule are checked, i.e. the LHS is evaluated. Each LHS

consists of one or many (LHS) clauses, pertaining to the following basic categories:

 Clauses for retrieving data from fact bases. These operations are similar to data base queries,

where as a result a set of facts (with 0, 1 or many elements) is retrieved. Each retrieved fact is
called an instance of this clause, and all subsequent clauses of the LHS have to be evaluated for

all instances. Thus, this clause type is spanning an evaluation tree. If one or more facts are

retrieved, the evaluation result for this clause is true, otherwise false. In the latter case, the
evaluation of this tree branch is terminated.

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 7 of 56

 Clauses which test whether data from the retrieved facts hold for specified conditions. If such a

test fails, the evaluation of this tree branch is terminated.

The set of leaves of the evaluation tree is considered a set of possible input data configurations for

firing the RHS of the rule. The RHS consists of one or many (RHS) clauses with the purpose of
executing fact base operations (adding or removing a fact) or other actions (e.g. printing a statement to

a log).

Accordingly, the expressiveness of the system is determined mainly by the number and capabilities of
available clause types. In DRAMS, the following functionality is available for the LHS of a rule:

 Data from fact bases can be obtained either by retrieve or by query clauses. In both cases, a query

on (in principle any existing) fact base is performed, and a number of facts, for which the slot
values specified in the query match and optional time-related conditions hold, are returned. In the

case of retrieve clause, these facts are used to create a corresponding number of instantiations,

and for each instance a number of requested variables are bound with specified slots. In the case
of query clause, only one instance is created, and a list of retrieved facts is bound to a result

variable.

These two clause types are representative for the first category defined above, whereas the

following LHS clause types belong to the second category.

 A unary BIND operator, which binds a specified variable with the evaluation result of an

expression. The expression can be another single (already bound) variable, or a more complex

arithmetic expression (with a standard repertoire of math operations, including generation of

random numbers).

processSchedule(time t){

 while new facts are available at time t

 loop

find all agent instances for which new facts are available;

 foreach agent instance

 loop

find all rules for which new facts are available at time t;

 foreach rule

 loop

 evaluate LHS;

 if evaluation result==true then

execute RHS;

 // e.g. generate new facts

 end if;

 end loop;

 end loop;

 end loop;

}

Figure 1: The schedule algorithm

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 8 of 56

 A full set of binary logical operators, where the operators can be any expressions allowed for the

BIND operator. The result is either bound to another variable or, alternatively, used as clause

evaluation result.

 A set of LIST operators, including generation and modification of lists, counting and extracting of

list elements, and several accumulator operations (sum, avg, min, max etc.).

 A set of SET operators, including creation and modification of sets, number or existence of

elements, as well as union and intersection of two sets.

 A NOT clause, inverting the evaluation result of the specified inner clause. The inner clause can

be any other LHS clause.

 A COMPOSITE clause, which can be seen as an encapsulated LHS with its own variable name

space. For processing the specified inner clauses, the evaluation mode can be chosen between
AND, OR and XOR.

RHS clauses dedicated to perform actions comprise:

 Asserting new facts to (in principle any existing) fact bases.

 With some restrictions, retracting existing facts from (in principle any existing) fact bases.

There is one special clause defined which can be part of both the LHS and RHS, providing two kinds
of actions:

 printing formatted text (including values of variables) to a log (either to a console window or to a

file);

 calling a method on the underlying model part; the peculiarity of this functionality is explained in

more detail in the following section.

An important aspect of any multi-agent simulation system concerns the means by which agents can
communicate with each other (inter-agent process). Technically, DRAMS provides three options:

 communication via the global fact base in a blackboard-like manner;

 writing facts to fact bases of other (remote) agents; this can be interpreted as the way humans

typically communicate with each other, via speech or written messages;

 reading facts from fact bases of remote agents; this is conceptually similar to mind-reading, and

should thus be avoided in most cases, but can be useful to find out (public) properties of another
agent.

To facilitate creating a model using any of the described features of DRAMS, an appropriate user

interface ought to be available. This user interface must provide adequate access to the rule engines,
and furthermore it should support the user with creating models. In order to allow flexibility in usage,

both as stand-alone tool or as part in an integrated toolbox, several levels of access are regarded. E.g.

fact and rule bases can be accessed by:

 instantiation of Fact or Rule classes within the tool source code,

 reading/writing/editing of configuration files using a specific language (in OPS5 style),

 reading/writing of XML-based configuration files (in future versions),

 Interactively defining facts and rules within the GUI (in future versions).

The user interface is discussed in more detail in section 3.2.

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 9 of 56

2.2. RULE SCHEDULING MECHANISM

Basically, at each point in a simulation run, all rules for which facts queried in at least one of the
retrieve or query clauses have been asserted or retracted are scheduled for evaluation. Successful

evaluation of a rule’s LHS results in the rule being entered into a conflict set of possible rules. All

possible rules fire, in an order resolved by the rule scheduler. Firing a rule executes its RHS, which
may include assertion of new facts or retraction of existing facts, thus triggering the rule scheduler

again. Simulation time advances only after no more rules can be scheduled for evaluation [1].

For the implementation of the rule scheduler a data-driven approach was chosen. Basic assumption for
this approach is that dependencies between rules can be expressed by shared data elements (facts),

where a rule reading a fact is depending on all rules writing this fact. More precisely, rule y is

depending on rule x, if rule y reads (retrieves, queries, tests for existence) facts written (asserted,

retracted) by rule x. These dependencies are calculated and written in a directed fact-rule-dependency
graph (an example is shown in Figure 2) prior to executing simulation runs. Each time t at which new

facts are available, the possible rule execution paths within the fact-rule-dependency graph starting

from these available facts can be depicted as a directed evaluation tree (Figure 3 shows the tree for the
graph of Figure 2). This tree shows the dependencies between rules at time t. A graph with equal

information for the initial fact configuration (t=0) can be displayed as rule dependency graph. This

evaluation tree is the foundation of the evaluation algorithm of the rule scheduler. The branches of the
evaluation tree for time t terminate/end at rules which

 retrieve/query facts asserted/retracted in a time step other than t (lagged fact base retrieval/query,

see section 4.1.7 and Table 2),

 assert/retract facts in a future time step (deferred fact base operation).

All rules within each "stage" of the tree are independent from each other and are processed within a so

called task. This, together with the fact that an evaluation tree for time t will be completely executed

within the single time step t, implies that within each time step several tasks might be processed,
evoking something like a temporal substructure within a time step. The flow of time within a

simulation run is represented by t, i.e. after processing the evaluation tree for time t, a new evaluation

tree might exists for time t+x (where x typically equals 1). If no new tree is available, then the

simulation run is terminated.

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 10 of 56

Figure 2: Data-rule-dependency graph (configuration at time t; legend: green oval - existing fact, red
oval - fact asserted by a rule, blue rectangle - rule, solid arc - reading fact base operations, dashed arc -

writing fact base operation)

Figure 3: Evaluation tree for time step t

The rule scheduler supports two modes for time advance [1]:

 Time-driven mode (“active time”). In this mode, time advances in regular intervals. The current
tick of a simulation run has to be provided by the simulations tool's scheduler (e.g. by the Repast

Schedule class), and DRAMS has to be informed about the current tick using the RuleSchedule

method processNextTick(Double tick); see Figure 4.

Fact 4

Rule a

Fact 1

retrieve

query

Fact 2

Rule b

Rule c Rule d

Rule f

retrieve

assert

Fact 3

retrieve retrieve

assert assert

retrieve

assert

query

Task 0 Task 1 Task 2 Task 3

Evaluation
Tree for
time t

Rule b

Fact 1

Rule f

Fact 3

Rule aFact 4

Rule c
Fact 2

Rule d
Fact 2

Rule fFact 3

Rule fFact 3

Rule aFact 4

Rule aFact 4

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 11 of 56

 Event-driven mode (“passive time”, discrete event mode). In this mode the simulation time is set

to the next closest event time. Processing of the next event is triggered by the RuleSchedule

method processNextTick(), the current simulation time is determined by DRAMS; see Figure 5.

Figure 4: Active time (round based) activity diagram for processNextTick(tick)

set current simulation time to ticktick

schedule all pending FB operations up to the current time

update schedule

process all pending operations or rules in the schedule up to the current time

update schedule

[new operations are scheduled for the current time]

[otherwise]

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 12 of 56

Figure 5: Passive time (discrete event) activity diagram for processNextTick()

2.3. TRACEABILITY AND LINKS

The feature of the OCOPOMO toolbox to preserve links (UUIDs) to CCD elements attached to rules,

fact templates and facts throughout simulation runs makes it necessary to let DRAMS be aware of

these links. The DRAMS parser is capable to recognise the links for the respective parts of the
declarative code. During simulation runs, traces of UUIDs of employed code elements are generated

and attached to simulation logs and numerical outcomes.

For each declarative code element, DRAMS tries to find a tag @link in a comment placed directly

before that element. If the comment contains more than one @link tags, than the one closest to the

element is chosen. The link information (UUID in hexadecimal or Base64 notation) must be written

behind the tag (with or without space character(s) in between).

Code example:

/* This is a comment...
 * another comment...
 * @link _7GlDAIh4EeGe0_TgxxkLAA
 * and another comment...*/
(defrule Agent::"nice rule" …)

schedule all pending FB operations due at the current time

update schedule

set simulation time to time of earliest event in the schedule

process all pending operations or rules in the schedule for the current time

update schedule

[new operations are scheduled for the current time]

[otherwise]

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 13 of 56

3. USING DRAMS

3.1. USER ROLES

User roles for the underlying OCOPOMO process
1
, which is supported by the here-presented DRAMS

toolkit, were proposed in the D2.1 deliverable [2] as it is presented in Table 1.

Table 1: User roles applied in the OCOPOMO system.

Icon User Role Icon User Role

Politician

Analyst

Civil servant

Modeller

Stakeholder

Administrator

Facilitator

DRAMS software, provided within the Simulation Environment module of the OCOPOMO toolkit,
supports the fourth phase of the OCOPOMO process, i.e., a development of executable policy models

based on conceptual descriptions - CCD models provided as outcomes of the previous process phase.

Who uses DRAMS to construct executable models

and to run simulations?

The design and iterative development of executable models is an expert task that requires an expertise,

and even an experience, in the area of socio-economic modelling. It implies that the Modeller is the
only user role involved in the highly focused and sophisticated activities related with the development

of agent-based models
2
. It also means that this user manual of DRAMS is especially dedicated for

Modellers.

Who should set up and administer DRAMS?

Since DRAMS software is provided as a set of Eclipse plug-ins, it is installed into a local Eclipse
environment (cf. installation instructions in the main D4.2 document), which is typically maintained

by the end user - in this case, the Modeller. However, an assistance of Administrator could be helpful

for the system set up, configuration, and technical support during the operation.

1 http://www.ocopomo.eu/results/glossary/ocopomo-policy-development-process; see also Figure 1 in the main

D4.2 document.

2 The distribution of user roles into the respective phases of the OCOPOMO process belongs to methodological

issues and is detailed separately in the D8.1 deliverable [7].

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 14 of 56

3.2. USER INTERFACE

The current user interface is designated to support the development of model prototypes and

debugging of the DRAMS software [3] [4]. A number of SWING based windows can provide several
different views:

 Main Window

o an overall data dependency graph

o an overall rule dependency graph

o separate (data) dependency graphs for agent types

o a trace of the rule schedule while running a simulation

o an error log

 Console Window

o an on-the-fly rule processing console with output view

o fact base dumps with filter and search functionality

 optional a number of output windows

o text-based log files

o a model result explorer with traceability visualisation

Figure 6: Meta-model for rule-based policy simulation models (preliminary version)

Together with Eclipse-based editing functionality, a fully featured Integrated Development

Environment is available as component of the toolbox that supports all facets of handling simulation
models, in this case agent-based policy models, in which basically the model structure is represented

ModelPartImperativePart DeclarativePart

SimulationModel

ModelClass

«instance»

RepastJ_Model
DRAMS_Model

«instance»

AgentClass

1

-model
1

1

-agents*

TypeDef

FactTemplate

Fact

Rule

1

-dataTypes
*

1

-factTemplates*

1

-facts
*

1

-rules

*

specifiedBy specifiedBy

managerFor

characterisedBy

characterisedBy

dataTypeFor
definitionFor

processedBy

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 15 of 56

as imperative code and the agent dynamics is described by declarative rules. This two-tier model

design is reflected in the overview meta-model (Figure 6).

As for simulation models considered in OCOPOMO, the imperative parts are implemented by Java-
based Repast models (RepastJ 3.1), while for the declarative parts the DRAMS rule engine (with its

own OPS5-like language) is used. The model design determines the properties of the IDE in many

ways and at any stage of use. For the editing part, it provides

 Eclipse built-in environment for editing Java code of Repast models, and

 Eclipse feature for editing declarative rules of the DRAMS model.

For the debugging part, it provides

 debugging and code inspection functionalities for Java code, and

 features for integrated debugging of Repast/DRAMS models, e.g. running the simulation model

step by step, to set breakpoints (halt clause) at any point within any rule and to display the
internal state of rule evaluation (visualisation of the evaluation tree) after reaching a breakpoint.

For the simulation execution part, it provides

 means to execute models within the Repast/Eclipse environment,

 a data collector (output writer) for outcome data of simulation runs.

3.2.1. Main Window

Figure 7 shows the structure of the DRAMS main window. The following menu entries are available:

 File:

o save PNG image of the currently shown diagram

o exit closes the simulation model execution

 View:

o visualise cycles in the (directed) DDGs

o enable or disable the printing of error messages in the error console

o enable or disable the printing of warnings in the error console

o discard all stored GUI setting (position and size of windows, preferences and code in

console window, etc.)

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 16 of 56

Figure 7: DRAMS main window

3.2.1.1. Data Dependency Graph

The overall data dependency graph shows the dependencies between facts and rules (see Figure 8).

Facts are displayed as ellipses, containing the fact name prefaced with the fact base owner (agent type
or GLOBAL). “Green” facts are available at model initialisation time, whereas “red” facts have to be

generated during simulation runs. Rules are displayed as blue boxes, containing the rule name

prefaced with the associated agent type (rule base owner).

Blue arcs connect a rule with all facts that are required on the LHS of the rule. A solid arc indicates

that a fact is used in a retrieve clause, while a dashed arc indicates the involvement of a query clause.

Facts that are asserted by the RHS of a rule are linked by solid green arcs. The number in square
brackets represents the deferment time for this assertion (default: 0.0). Solid red arcs denote that the

rule retracts the linked fact from its fact base. Possible cycles in the graph can be highlighted on

demand [1].

Data dependency graphs (tabs "*DDG") have a filter function. Clicking on any node hides all
information but the selected node with all directly related nodes. E.g., for any rule, all incoming and

outgoing edges to facts can be more clearly visualised. A click on the background disables the filter.

Error log

Agent DDGs

Schedule log

Overall DDG
RDG

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 17 of 56

Figure 8: Example of data dependency graph

3.2.1.2. Rule Dependency Graph

From the data dependency graph DRAMS automatically derives the overall rule dependency graph. A

rule A depends in its execution on another rule B if it requires a fact F as input, i.e. on its LHS, that
rule B produces as its output, i.e. on its RHS. In the example in Figure 9 the rule “compute-total-sales”

of agent type Company depends on the rule “sell-to-customer” because it needs facts of type “sold”,

which are asserted by “sell-to-customer” (see the DDG in Figure 8) [1].

Figure 9: Example of rule dependency graph

3.2.1.3. Trace of Rule Schedule

The schedule log (tab "Schedule", see Figure 7) is shown only for the current tick, not for the entire

simulation run. This is mainly due to optimising the execution speed and minimising the memory

usage.

Some performance figures are added to the schedule log:

 Rule execution time for current tick. In contradiction to the figures presented for "time to run" in

the simulation log (which reflect the time taken by all actions that have been carried out within
the tick, including e.g. updating the user interface and writing data to files), the "pure" rule

execution time is shown here.

 Total rule execution time

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 18 of 56

 Memory usage

If processing of a rule takes more than one second, a warning message "### PROFILER
INFORMATION ###..." is printed to the error console).

3.2.2. Console Window

Figure 10: DRAMS console for on-the-fly rule processing and debugging

Figure 11 shows the on-the-fly rule processing console with, mainly dedicated for rule debuging. The
following topics should be considered:

 The rule written in the on-the-fly rule editor has similar syntax to a regular rule defined in a

.drams file, except the keyword which must be execrule (instead of defrule).

 The current simulation time is valid also for rules executed in the console. This is expressed by a

text field indicating the current simulation time.

 Fact assertions from rules executed within the console become effective immediately. The fact

base status is shown in the fact base inspector (tab "Fact Bases" at the bottom of the window).

 A filter for the fact base inspector is available which allows to select an agent type and/or a

concrete agent instance for inspection.

 If the checkbox "factbase update" is activated, the fact base inspector is updated every time the

simulation time changes.

Fact base viewer

On-the-fly rule
editor

On-the-fly rule
output

On-the-fly
control panel

Fact base viewer
filter and control

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 19 of 56

3.2.3. Output Writer Windows

Different output window types are available for displaying an information generated during simulation

runs. It is possible to define an arbitrary number of output windows for any simulation model.

3.2.3.1. Log output

Figure 11: DRAMS output window for simulation logs

3.2.3.2. Model Explorer

The Model Explorer plugin can be used for visualisation of traceability information and model

debugging (see Figure 12). For detailed information see [5] and [6].

Figure 12: DRAMS Model Explorer window

Tick Agent and rule information Rule output

Java output

Linked CCD
Elements

Highlighted
Text Phrase

Scenarios and
Background
Documents

Derived Fact
with
Template Trace Tag

Selcted
Log entry

Initial Fact
with
Template and Instance Trace Tag

Rule
with
Trace Tag

Document
Viewer

CCD
Viewer

Trace Graph
Visualisation

Simulation
Log

Zoom and Filter Control

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 20 of 56

3.3. INTEGRATION IN REPAST MODELS

As for typical simulation models (considered in OCOPOMO), the imperative parts are implemented by Java-
based Repast models (RepastJ 3.1), while for the declarative parts the DRAMS rule engine (with its own OPS5-

like language) is used. A class diagram for such a model is shown in Figure 13; it also shows the dependencies

between the different components/packages involved (RepastJ 3.1, DRAMS, DRAMS Platform and the concrete

model, which is shown exemplarily in the diagram).

Figure 13: Example class diagram of a RepastJ-based DRAMS simulation model

DRAMSRepastJ

Concrete Model

«interface»
drams.modelling::IModel

«interface»
drams.modelling::IAgent

drams.modelling::Agent

RepastJ::SimModelImpl

DRAMS Platform

drams.platforms.repastj::Model

model::ConcreteModel

model::ConcreteAgentType1 model::ConcreteAgentTypeN

model::ConcreteModelAgent-model

1

-agents

*

drams.engine::RuleEngine

drams.engine.schedule::RuleSchedule

1

-engine

1

1

-engine

1
1

-ruleSchedule

1

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 21 of 56

4. DRAMS LANGUAGE SYNTAX

This section gives an overview on the DRAMS language implemented for specifying declarative
model parts. This language is based on OPS5 style, and to some extend similar to languages used for

other rule engines, e.g. JESS.

The syntax definitions presented in the following subsections are written in a EBNF like notation with
the following constructs:

 <symbol>: symbols are put in arrow brackets

 <charSeq>: symbols written in italics define an arbitrary sequence of characters, e.g. names

(strings) or numbers (usually Java types int or double). Strings can be written without quotes, if

containing only characters allowed for Java identifier or one of the following special characters :
+ - ~ | § & * / ^ % $. Otherwise they have to be put in double quotes (").

 terminal: terminals are written in bold (without quotes)

 (alternative1|alternative2): alternative symbols or terminals are put in parentheses

and separated by a divider line

 [option]: optional symbols or terminals are written in square brackets

 repeated*: constructs repeated zero or more times are marked with an asterisk

 repeated+: constructs repeated zero or more times are marked with a plus sign

4.1. STRUCTURE OF DEFINITION FILE

The declarative code is specified within one or more text files (usually with the file extension

".drams") which have to be delivered to the RuleEngineManager (method addDeclarativeCode()).

Such a file contains arbitrary numbers of definitions for enumerated data types, fact templates, facts

and rules, which can be written in any arbitrary order. All defined items (except data type definitions)

have to be assigned to rule engines of distinct agent classes or to the global rule engine; the class
hierarchy of the Java model is considered, i.e. if an item is assigned to an agent superclass, then this

item will be present in rule engines of all subclasses. The RuleEngineManager takes care for the

correct code distribution.

(<typeDefinition>|<factTemplate>|<fact>|<rule>)*

The following subsections describe the four possible item types.

4.1.1. Type definitions

With type definitions, custom enumeration data types can be specified, i.e. data types for which a set

of discrete user-specified values are defined. Values can be strings or numbers.

(deftype <typeName> [<value> [, <value>]*])

Example:
(deftype HousingType [market, affordable])

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 22 of 56

4.1.2. Fact templates

Fact templates define signatures of facts, i.e. the name and structure of facts allowed to be stored in

fact bases. A fact template definition consists of the name of the target agent type (agent class name or

global for the global rule engine), the fact name and a number of data slots with the related data

types. Apart from custom enumeration types (deftype), the following data types are allowed:

 all data types defined in package java.lang, e.g. Integer, Double, String

 all data types defined in package java.util, e.g. UUID

 general objects (Object)

 Fact and Fact[] can be used when regular facts or shadow facts have to be stored

 IFact and IFact[] ditto, but also for SimpleShadowFacts (e.g. global::$TIME$)

(deftemplate <targetAgentType>::<factName> [(<slotName>:<dataType>)]*)

Example:

(deftemplate global::planningProposalUnitCost
(type:HousingType) (value:Double) (uniq:UUID))

4.1.3. Facts

Using fact definitions, fact bases can be endowed with concrete data. There are two syntax constructs

available, one for asserting a single fact, and another for asserting multiple instances for a given fact
name. In both cases, the target fact base(s) has/have to be specified (fact name, agent type and

optionally agent instance; agent instances have to be specified only by name, the rule engine UUID

can't be used because it won't be available at the time the facts are inserted), followed by a concrete

configuration of the data slots. Optionally, an insertion time and a flag that defines the fact as
permanent can be added.

(insertfact [permanent] [at <timeStamp>]

<targetAgentType>[@<instance>]::<factName>
[(<slotName> <value>)]*)

(insertfacts [permanent] [at <timeStamp>]

<targetAgentType>[@<instance>]::<factName>
[([(<slotName> <value>)]*)]*)

Examples:
(insertfact global::planningProposalUnitCost (type market)(value 100000.0))

(insertfacts global::planningProposalUnitCost
 ((type market)(value 10000.0)
 ((type affordable)(value 7000.0))

(insertfact Agent@"agent-1"::someFact (value 672))

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 23 of 56

4.1.4. Rules

Rule definitions basically consist of a rule identifier, a condition (or left-hand side, LHS) part and an

action (or right-hand side, RHS) part. The identifier contains (similar to fact template definitions) a
rule name and a target agent type (an agent instance definition is not allowed). Both the LHS and the

RHS are composed of clauses; the available clause definitions are described in the following

subsections.

(defrule <targetAgentType>::<ruleName>

 <LHSClause>+

=>

 <RHSClause>*

)

An experimental feature allows to associate rule to rule groups. There are two groups available:

XOR group (syntax token: +): at most one of the rules in the group can fire within a time step (the rule

which meets the LHS condition first), no matter whether the LHS of some of the other rules become
true in a later task of the time step.

(+ <defRule>+)

AND group (syntax token *): the RHSs of all rules within the group fire jointly only if the LHSs of all

rules become true.

(* <defRule>+)

4.1.5. Clauses

The clauses available for the LHS and RHS sides are described in the sections 4.2 and 4.3,

respectively. The following symbols are used within these clause definitions:

<variable> ::= ?<variableName> defines a variable.

<slot> ::= (<slotName> <expression>) defines a data slot for a fact base operation.

<slot_cond> ::=

([<compare_operator>] <slotName> (<expression>|<wildcard>)) |

|[<compare_operator>] <slotName1> <slotName2>|

defines a fact base condition, i.e. a compare operation between a data slot value and either an

expression (or wildcard for certain cases) or another data slot value. For the optional compare

operator, see section 4.1.8.

<lag> specifies the fact base query mode for some of the LHS clauses; see section 4.1.7.

<expression> ::= (<value>|<variable>|<mathExpression>) defines either a constant

value, a variable or a mathematical expression. Also, lists of value are allowed, see section 4.1.8.

<mathExpression> ::= {<mathematicalExpression>} defines a mathematical expression;

see section 4.1.8.

<wildcard> ::= * defines a wildcard slot value for "equal" and "not equal" slot operators.

<LHSClause> is a placeholder for any of the LHS clauses.

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 24 of 56

<deferment> ::= deferredBy <timeValue> specifies a time value by which a writing fact

base operation (assertion or retraction) should be deferred.

<list> ::= (<variable> | [<listValue> [, <listValue>]*]) is a placeholder for a

variable containing a list or the (constant) definition of a list.

<set> ::= (<variable> | [<setValue> [, <setValue>]*]) is a placeholder for a

variable containing a set (a list with no repeated values) or the (constant) definition of a set.

<factDescr> ::= [<targetAgentType>[@<instance>]::]<factName> specifies the name

of a fact, optionally combined with a fact base description (agent type and optionally instance) where

the fact is/will be stored. For accessing the agent's local fact base, only <factName> must be

specified; for remote fact base access reasonable combinations of both <targetAgentType> (as

constant string) and <instance> must be provided. The global fact base is accessible with the

keyword global as <targetAgentType>; in this case, an instance must not be specified.

<factName> ::= (<customFactName> | $TIME$ | $AGENT$ | $SELF$) is a placeholder

for any custom fact name (a string with characters allowed for Java identifiers) or the name of one of
the predefined (pseudo) facts; see section 4.1.10.

<factList> is a special type of list containing facts. Such lists are retrieved by query clauses, and

processed by accumulator clauses.

<printString> is a string which may contain variable identifiers; the content of the variables is

resolved and printed during runtime.

4.1.6. Accessing slots of fact variables

For variables bound to facts the slot values can be accessed with the following syntax:

?factVariable.slotValue. This construct can be used in any kind of clauses where variables are

allowed, also in expressions.

Code example:

?a <- (global::$AGENT$ (type ["Employer", "Employee"]))

=>

(print "name of company member: ?a.name")

4.1.7. Lag modes

Lag modes are used to specify the temporal conditions of facts in LHS clauses which involve fact base

queries (retrieve, query and exists clause). While by default only facts are retrieved which have been
asserted at the current time step, lag modes allow to retrieve fact asserted at any other time. Table 2

gives an overview on the available lag modes.

<lag> ::= (

 all |

 last |

 latest |

 at <timeValue> |

 before <timeValue> |

 after <timeValue> |

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 25 of 56

 (lag|relAt) <timeValue> |

 (lagBefore|relBefore) <timeValue> |

 (lagAfter|relAfter) <timeValue> |

)

Table 2: Lag mode specifications

Lag mode

Lag value

Behaviour at
time t

Time for which rule
evaluation is
scheduled, if fact f
asserted or retracted

3

at time ta

Facts retrieved at
time ta for non-
permanent data

Facts retrieved at
time ta for
permanent data

Remark

 Insignificant Retrieve only
facts which
have been
asserted at
current tick t

Next task within
currently active time
event

Facts asserted in the
previous task

4
 of ta

All available facts Default mode,
used when no
lag mode is
specified

all Insignificant Retrieve all
available
facts

Next task within
currently active time
event

All available facts All available facts

at Absolute time
tabs

Retrieve only
facts which
have been
asserted at
tick tabs

Next task within
currently active time
event, if tabs == ta

Facts asserted at
tick tabs

All facts valid at tabs

(i.e. all facts
asserted before or
at tabs)

Currently
works only if
lag value is
specified by
constant

before Absolute time
tabs

Retrieve only
facts which
have been
asserted
before tick
tabs

Next task within
currently active time
event, if tabs > ta

Facts asserted prior
to tabs

All facts valid prior
to tabs (i.e. all facts
asserted before tabs)

Currently
works only if
lag value is
specified by
constant

after Absolute time
tabs

Retrieve only
facts which
have been
asserted after
tick tabs

Next task within
currently active time
event, if tabs < ta

Facts asserted later
than tabs

All available facts Currently
works only if
lag value is
specified by
constant

relAt

lag

Relative time
trel

Retrieve only
facts which
have been
asserted at
tick
(t – trel)

First task of time
event at (ta + trel)

Facts asserted at
(ta - trel)

All facts valid at (ta -
trel) (i.e. all facts
asserted before or
at (ta - trel))

Currently
works only if
lag value is
specified by
constant

relBefore

lagBefore

Relative time
trel

Retrieve only
facts which
have been
asserted
before tick (t
– trel)

First task of time
event at (ta + trel + 1)

Facts asserted
before (ta - trel)

All facts valid prior
to (ta - trel) (i.e. all
facts asserted
before (ta - trel))

Currently
works only if
lag value is
specified by
constant

relAfter

lagAfter

Relative time
trel

Retrieve only
facts which
have been
asserted after
tick
(t – trel)

Next task within
currently active time
event

Facts asserted after
(ta - trel)

All available facts Currently
works only if
lag value is
specified by
constant

3 only for not-clauses; in this case, these rules are candidates for being scheduled at the first tick, too
4
 or initially available facts, if ta = 0

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 26 of 56

last Insignificant Retrieve only
facts which
have been
asserted at
previous tick
(t - 1)

First task of time
event at (ta + 1)

Facts asserted at
(ta - 1)

All facts valid at (ta -
1) (i.e. all facts
asserted before or
at (ta - 1))

latest Insignificant Retrieve only
facts with the
highest
available
timestamp

Next task within
currently active time
event

Facts with most
recent timestamp

All available facts

4.1.8. Slot compare operators

A set of compare operators has been introduced to increase the expressiveness of pattern for unifying
facts to clauses and to reduce the number of clauses involving fact base operations.

Usually, a clause specifies a number of slots for which the given value must be equal in the fact. In the

extended syntax, an additional operator can be specified for e.g. unifying facts with "not equal" values,

a specified order or intervals. Table 3 gives an overview on all available operators and the different
effect when the clause specifies a single value or a list of values. The operators can be applied for any

kind of comparable content, e.g. numbers and strings. Note that the equal (==) and not equal (!=)

operators usually will be calculated more efficiently than the other operators.

Table 3: Slot compare operators

Syntax Result for single value Result for value list

(slotName ?value) slot value equal to ?value slot value equal to one of the values in the list
defined by ?value

(== slotName ?value) slot value equal to ?value slot value equal to one of the values in the list
defined by ?value

(!= slotName ?value) slot value not equal to ?value slot value equal to none of the values in the list
defined by ?value

(< slotName ?value) slot value less than ?value slot value less than the lowest value in the list
defined by ?value

(> slotName ?value) slot value greater than ?value slot value greater than the highest value in the list
defined by ?value

(<= slotName ?value) slot value less than or equal to ?value slot value less than or equal to the lowest value in
the list defined by ?value

(>= slotName ?value) slot value greater than or equal to ?value slot value greater than or equal to the highest
value in the list defined by ?value

(<> slotName ?value) Not defined - always false within the open interval defined by the lowest and
the highest values in the list defined by ?value

(<=> slotName ?value) slot value equal to ?value within the closed interval defined by the lowest
and the highest values in the list defined by ?value

(!<> slotName ?value) Not defined - always true outside the open interval defined by the lowest
and the highest values in the list defined by ?value

(!<=> slotName ?value) slot value not equal to ?value outside the closed interval defined by the lowest
and the highest values in the list defined by ?value

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 27 of 56

4.1.9. Mathematical expressions

Mathematical expressions are written in curly brackets. Operands can be constants or variables (see

<variable>). Beyond the basic arithmetic operations, the following constants and functions are

(currently) available
5
:

Predefined Constants:

 E - The double value that is closer than any other to e, the base of the natural logarithms

(2.718281828459045).

 Euler - Euler's Constant (0.577215664901533).

 LN2 - Log of 2 base e (0.693147180559945).

 LN10 - Log of 10 base e (2.302585092994046).

 LOG2E - Log of e base 2 (1.442695040888963).

 LOG10E - Log of e base 10 (0.434294481903252).

 PHI - The golden ratio (1.618033988749895).

 PI - The double value that is closer than any other to pi, the ratio of the circumference of a

circle to its diameter (3.141592653589793).

Supported Functions:

 abs(<value>) - The absolute value of a double value.

 acos(<value>) - The arc cosine of a value; the returned angle is in the range 0.0 through pi.

 asin(<value>) - The arc sine of a value; the returned angle is in the range -pi/2 through

pi/2.

 atan(<value>) - The arc tangent of a value; the returned angle is in the range -pi/2 through

pi/2.

 cbrt(<value>) - The cube root of val.

 ceil(<value>) - The smallest (closest to negative infinity) double value that is greater than

or equal to the argument and is equal to a mathematical integer.

 cos(<value>) - The trigonometric cosine of an angle.

 cosh(<value>) - The hyperbolic cosine of val.

 exp(<value>) - Euler's number e raised to the power of a double value.

 expm1(<value>) - ex-1.

5 all static methods from java.lang.Math can be used

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 28 of 56

 floor(<value>) - The largest (closest to positive infinity) double value that is less than or

equal to the argument and is equal to a mathematical integer.

 getExponent(<value>) - The unbiased exponent used in the representation of val.

 log(<value>) - The natural logarithm (base e) of a double value.

 log10(<value>) - The base 10 logarithm of val.

 log1p(<value>) - The natural logarithm of (val+1).

 max(<value1>, <value2>) - maximum operator, also for lists of Integers and Doubles.

 min(<value1>, <value2>) - minimum operator, also for lists of Integers and Doubles.

 nextUp(<value>) - The floating-point value adjacent to val in the direction of

positive infinity.

 random() - A double value with a positive sign, greater than or equal to 0.0 and less than 1.0.

 round(<value>) - The closest 64 bit integer to the argument.

 roundHE(<value>) - The double value that is closest in value to the argument and is equal

to a mathematical integer, using the half-even rounding method.

 round(<value>, <number_of_decimal_places>) - Round function, where the number

of decimal places can be specified.

 signum(<value>) - The signum function of the argument; zero if the argument is zero, 1.0

if the argument is greater than zero, -1.0 if the argument is less than zero.

 sin(<value>) - The trigonometric sine of an angle.

 sinh(<value>) - The hyperbolic sine of a double value.

 sqrt(<value>) - The correctly rounded positive square root of a double value.

 tan(<value>) - The trigonometric tangent of an angle.

 tanh(<value>) - The hyperbolic tangent of a double value.

 toDegrees(<value>) - Converts an angle measured in radians to an approximately

equivalent angle measured in degrees.

 toRadians(<value>) - Converts an angle measured in degrees to an approximately

equivalent angle measured in radians.

 ulp(<value>) - The size of an ulp of the argument.

For optimal execution speed, expressions are complied into Java class files and dynamically loaded
and bound into the rule code. However, there are a number of issues that have to be taken into account

by modellers:

 A Java compiler (usually the JDK) must be available for all model projects that use expressions.

See section Chyba! Nenalezen zdroj odkazů. for details.

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 29 of 56

 A general problem for the expression evaluation algorithm is that DRAMS can determine the type

of any variable only at runtime, which makes it almost impossible to generate fairly efficient code

for evaluating expressions when it should be allowed to flexible use variables containing data of

any type.
The compromise chosen for DRAMS expressions is that all variables in expressions are treated as

Doubles unless another data type is specified.

For example, the function min(list_of_values) for finding the minimum value in a list of

values which is stored in variable ?list must be written as

o {min(?list:Double[])}, if ?list contains a list of Doubles, or

o {min(?list:Integer[])}, if ?list contains a list of Integers.

 As expressions are translated into Java code and afterwards are complied into Java class files, the

usage of arbitrary Java code in expressions is possible in principle; e.g., all static methods of

java.lang.Math are available by default. The usage of other libraries or local code might

increase the power of these expressions, but also brings considerable risks. Here is a limited
selection of examples what would be valid expressions:

o ?value <- (is {min(?list:Double[])}) - the complete example from above

o ?value <- (is {round(floor(4.6))}) - nested functions

o ?value <- (is {(int)floor(4.6)}) - typecast

o ?value <- (is {uchicago.src.sim.util.Random.uniform.nextDoubleFromTo(1.0,

4.0)}) - access to external libraries; of course this example only works if RepastJ is
available in the model classpath

o ?value <- (is {?v >= 0 ? 1 : 0}) - if variable ?v is positive or zero then the
expression result is 1, otherwise 0 (result type will be Integer)

o ?value <- (is {(?self.name:String).length()}) - determining the length of the
string stored in the slot "name" of a fact bound to variable "?self"

o ?value <- (is {(?self.name:String).replace("-", "_")}) - some string operation

(type of ?value will be String)

4.1.10. Fact names

Fact names are used as key strings for accessing data in fact bases. Only characters allowed for Java

identifiers should be used for custom fact names. Fact names starting and ending with a "$" character

are reserved for predefined facts. The following predefined facts are defined:

$TIME$

Description This pseudo fact is situated in the global fact base and reflects the current

simulation time.

Equivalent

fact template

(deftemplate global::$TIME$
(value:Double)
(owner:String)
(timeStamp:Double)

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 30 of 56

)

Slots value: the current simulation time

 owner: default slot reflecting the fact owner ("GLOBAL")
 timeStamp: default slot reflecting the time of creation ("0.0")

$AGENT$

Description For each created rule engine instance (respective each agent instance) a $AGENT$

fact is asserted to the global fact base. It contains information about the agent that

(among others) can be used for accessing foreign agents' fact bases.

The retraction of this fact for any agent triggers the death process for this agent,

i.e. the related rule engine instance is no longer regarded by the rule scheduler.

Equivalent

fact template

(deftemplate global::$AGENT$
(name:String)
(agent_type:String)
(agent:String)
(ruleengine_instance:UUID)
(owner:String)
(timeStamp:Double)
(permanent:Boolean)

)

Slots name: the name of the agent instance

 agent_type: the agent type (class name of Java agent representation)
 ruleengine_instance: the unique identifier (UUID) of the agent instance;

this value can be used as <instance> part of a <factDescr> (see 4.1.5) in

order to access the fact base of this agent instance. Remark: in the current

version, the related <targetAgentType> must be explicitly specified as a

constant in order to allow the rule scheduler to work properly.

 agent: this string combines the agent_type and ruleengine_instance in
a way that can directly be used to identify a foreign agent's fact base.

Remark: this functionality is not yet fully implemented and tested.
 owner: default slot reflecting the owner of this fact (should have the same

content as agent)
 timeStamp: default slot reflecting the time of creation (value usually "-1.0")
 permanent: default slot specifying the fact as permanent (value "true")

$SELF$

Description For each created rule engine instance (respective each agent instance) a $SELF$

fact is asserted to the agent's own fact base. Similar to the $AGENT$ fact it contains

information about the agent that (among others) can be used for communication

purposes.

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 31 of 56

Equivalent

fact template

(deftemplate targetAgentType::$SELF$
(name:String)
(agent_type:String)
(agent:String)
(ruleengine_instance:UUID)
(owner:String)
(timeStamp:Double)
(permanent:Boolean)

)

Slots name: the name of the agent instance

 agent_type: the agent type (class name of Java agent representation)
 ruleengine_instance: the unique identifier (UUID) of the agent instance.

 agent: this string combines the agent_type and ruleengine_instance in

a way that can directly be used to identify a foreign agent's fact base.
 owner: default slot reflecting the owner of this fact (should have the same

content as agent)
 timeStamp: default slot reflecting the time of creation (value usually "-1.0")
 permanent: default slot specifying the fact as permanent (value "true")

4.1.11. Output writing facility

A flexible and powerful plugin-based facility for generating various kinds of simulations logs and

output files has been implemented in DRAMS. It is planned to use this functionality for all kinds of
outputs, including XML or CSV files with numerical data, text or CSV files for simulation logs.

The main concept behind this output writer facility is the specification of an arbitrary set of output

writers in terms of deflog or defoutput definitions in .drams files. In consequence, if no such

writers are defined, no output will be generated. A reasonable scenario might be to add one or more

console windows during model development, and to add output writers as soon as the model should
generate (persistent) simulation outcomes. For productive runs, the console windows might be

disabled in order to save computation time.

A number of output writers is implemented and integrated as plugins into DRAMS, and can be

directly used for writing simulation outcomes (see Table 4). In principle all these writers can be used
for both logging and writing of simulation data.

Table 4: Available output writers

Writer ID Description

graph-xml XML files for numerical data according to specification of UNISOB
(Francesco Poggi)

csv CSV files for both numerical and textual simulation outcomes

text Plain text files mainly for text logs

default Default output stream

console Console window for writing plain text (simulation logs) with text style

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 32 of 56

attributes for different types of outcomes. The meanings of the different
colours are:

 blue: statements written by Java code (via System.out.print*)

 red: statements written by Java code (via System.err.print*)

 gray: text from DRAMS print clauses - meta information (e.g.
tick, agent name, rule name)

 black, bold: text from DRAMS print clauses - messages
See section 3.2.3.1

tab-console Single console window, where all specified output consoles are
displayed a tabs within the window

explorer DRAMS Model Explorer; see section 3.2.3.2

Depending on the writer ID, a file containing the log information or output data might be generated.
The default location is a folder named "<modelFolder>/data/experiments/" (this can be changed from

Java model code with ResultGenerator.getInstance().setDefaultOutputPath(String

defaultOutputPath)). For each simulation run, a new subfolder with the name "run-

<year><month><day><hour><minute><second><millisecond>" is created. The output folder for each
writer can easily be changed by adding path information to the writer name.

Don't add a file extension to the writer name, this will be done automatically according to the chosen

format.

4.1.11.1. Log writer

A log writer processes all messages created by print clauses in DRAMS rules and, optionally,

messages written by the Java output streams System.out and System.err (and probably some

other channels in future versions).

Any number of log writers can be added to a simulation model by specifying appropriate definitions in

.drams files (on the level of deftemplate, defrule etc.). The syntax is as follows:

(deflog <writer_ID>

 [prio [comp_op] <int_value> [<int_value>]]

 [<options_list>]

 <writer_name>

)

with

 <writer_ID> is one of the writer IDs specified in Table 4. Usually the console, text,

styled-console and csv should be used here. The reason for writing logs into CSV files is

that this would enable the "simulation analyst" to comfortably sort and filter information of logs

as well as doing searches with standard spreadsheet software.

 <writer_name> is the name of the writer, i.e. the file name under which the log file is stored,

or the caption of the output window;

 [prio [comp_op] <int_value> [<int_value>]] is an optional field specifying the

priority of messages that will be processed by the writer. An optional comparative operator (one

of ==, !=, <, <=, >, >= together with one <int_value>, or <=>, !<=>, <>, !<> together with

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 33 of 56

two <int_value> specifying the range borders; no comparator will be treated as >=) can be

used to define a writer specific for messages with priorities greater than, less than or equal to the

specified level. If the priority field is omitted, then the writer will process all messages (i.e. the

priority level for the writer is Integer.MIN_VALUE).

The priority of messages can be specified at print clauses, the default value is 0. In order to

change the priority, the syntax definition for print has been extended by an optional attribute

prio:
(print [prio <int_value>] "<printString>")

 <options_list> is an optional list of parameters that defines what (meta) information will be

added to the output. By default, all meta information and Java system message are processed, but

these can be deactivated for one or many of the following items:

o cumulated - the output is written to one and the same facet definition (column in the data

table), independent from the agent instance that produces the output; otherwise a new facet is
generated for each agent instance generating data for this facet definition.

o no_tick - simulation time will be omitted;

o no_task - task number within simulation time will be omitted;

o no_type - type of agent producing the message will be omitted;

o no_inst - name of agent producing the message will be omitted;

o no_rule - name of rule producing the message will be omitted;

o no_trace - all trace information will be omitted;

o no_value - only meta information will be printed;

o no_sys - Java system messages will be omitted;

o no_err - Java error messages will be omitted.

Example code for log writer definitions:

 (deflog console "journal") - the smallest possible log writer definition for a console
similar to the Repast Output window

 (deflog styled-console prio < 10 [no_task] "journal")

 (deflog styled-console prio >= 10 [no_task] "journal-high priority")

 (deflog csv [no_err, no_sys] "journal")

 (deflog graph-xml prio <=> 10 19 [no_task, no_sys, no_err, cumulated]

"generalGraph") - typical log file definition for (actually numerical) XML output

4.1.11.2. Output writer

Similar to the log writers, an output writer processes data samples provided by two newly introduced

clauses: sample and write.

Any number of output writers can be added to a simulation model by specifying appropriate

definitions in .drams files (on the level of deftemplate, defrule etc.). The syntax is as follows:

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 34 of 56

(defoutput <writer_ID>

 [<options_list>]

 <writer_name>

 [(<facet>:<dataType>)]*

)

<facet> := <facetName>[|<facetDescription>] |

 "<facetName>[|<facetDescription>]"

with

 <writer_ID> similar to log writer, see 4.1.11.1;

 <writer_name> similar to log writer, see 4.1.11.1;

 <options_list> similar to log writer, see 4.1.11.1;

 <facet> specifies names, optional description and types of data fields that can be part of the

output. This information can be regarded as headers of table columns, whereas each data set

constitutes a line in the table.

o <facetName> the short name of the data field;

o <facetDescription> an optional more narrative description for the data field;

o <dataType> the data type for the field, e.g. Double or String.

Example code for output writer definitions:

(defoutput graph-xml "newTestOutput" [no_task, no_trace]
 ("value1|This is value 1.":Double) (value2:String) (value3:Double))

4.2. LHS CLAUSES

The following subsections give an overview on all currently available LHS clauses, grouped by

functional relationship.

4.2.1. Fact base retrieval

[<variable> <-] (<factDescr> (<slot>|<slot_cond>)*)

[<variable> <-] (<lag> (<factDescr> (<slot>|<slot_cond>)*))

Short description Retrieve sets of variable assignments from a fact base query matching a

specified pattern of values.

Arguments <factDescr>: name of the fact to be retrieved, possibly combined

with fact base owner description.

 <slot_cond>: pairs of <slotName>/<constant>,

<slotName>/<boundVariable> or <slotName>/

<mathExpression> specifying the fact base query pattern (i.e.

condition)

 <slot>: pairs of <slotName>/<freeVariable>) specifying the

variable names which are to be assigned with values from the

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 35 of 56

specified slot names as result of the fact base query

 Optional <lag>: a lag mode and possibly the related lag value.

Returns The optional result variable is bound with the retrieved fact(s).

Evaluation Result True, if one or more facts match the specified pattern

 Otherwise false

Description This operation performs a fact base query, searching for facts that match
the specified pattern. The pattern consists of constants and bound

variables which are assigned to slot names. All facts with equal values at

these slots are retrieved.
For each returned fact, a set of variable assignments for the specified free

variables is generated. In this set, values from the requested slots are

assigned to the corresponding variable names. For each set of variable

assignments a new branch of the evaluation tree is generated, i.e. the
subsequent clause of the rule is evaluated for each set of variable

assignments.

If only a fact name is given, than the target of the query is the local fact
base (associated with the rule engine that evaluates the actual retrieve

clause). Remote fact bases can be accessed by specifying the name (and

instance, if required) of any agent or global rule engine.

The optional result variable is bound to a single fact, and the evaluation
tree for the rule is split into several branches, one for each unified fact.

Thus, this construct replaces the following lines of code:
?list <- (query (global::$AGENT$))

?res <- (each ?list)

Predefined slot names owner: string, specifying the agent that generated the fact.

 permanent: Boolean value, indicating whether the fact is

permanent or not. A permanent fact is retrieved in every time step
(beginning with the time of assertion).

 timeStamp: double value, specifying the time of assertion.

Example the clause (factName (slotName *)) will unify all facts that have

a value (not null) defined for slot slotName;

 the clause (factName (!= slotName *)) will unify all facts that

have no value defined for slot slotName.

 (global::boroughCharacteristics (!= landArea *)

(housePrices ?p)(instName ?borough) (innerOrOuterLondon

?location) (residentialEarnings ?re)) - unifies all facts

with borough characteristics that have no land area assigned yet

 The fact base allows also slots for which a list of values is specified.

For example it is possible to write the following code in order to let

the $SELF$ retrieve clause become true only for agent names "agent-

1" or "agent-2":

o ($SELF$ (name ["agent-1", "agent-2"])

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 36 of 56

(ruleengine_instance ?inst))
o ?agentList <- (is ["agent-1", "agent-2"]) // list

could also be retrieved from another fact
($SELF$ (name ?agentList) (ruleengine_instance
?inst))

o The slot compare algorithm is save in regard to lists probably

stored in facts by analysing the fact templates.

4.2.2. Fact base queries

[<variable> <-] (query [<lag>] (<factDescr> <slot_cond>*))

Short description Provide a list of facts as result from a fact base query matching a specified

pattern of values.

Arguments <factDescr>: Name of the fact, possibly combined with fact base

owner description.

 <slot_cond>: Pairs of <slotName>/<constant>,

<slotName>/<boundVariable> or

<slotName>/<mathExpression> specifying the fact base query

pattern, optional with a compare operator

 Optional <lag>: a lag mode and possibly the related lag value.

Returns <factList>: the list of facts fulfilling the query

Evaluation Result True, if one or more facts match the specified pattern

 Otherwise false

Description This operation performs a fact base query, searching for facts that match

the specified pattern. The pattern consists of constants and bound
variables which are assigned to slot names. All facts with equal values at

these slots are retrieved.

The query result is stored in the (optionally) specified result variable
(which must not be bound).

If only a fact name is given, than the target of the query is the local fact

base (associated with the rule engine that evaluates the actual retrieve

clause). Remote fact bases can be accessed by specifying the name (and
instance, if required) of any agent or global rule engine.

Predefined slot names owner: string, specifying the agent that generated the fact.

 permanent: Boolean value, indicating whether the fact is

permanent or not. A permanent fact is retrieved in every time step
(beginning with the time of assertion).

 timeStamp: double value, specifying the time of assertion.

Example ?tflist <- (query (global::$AGENT$ (!= type

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 37 of 56

Household))) - lists all agent facts that are not of type "Household"

 ?tflist <- (query (global:: $AGENT$ (name ["agent-1",

"agent-2", "agent-7"]))) - lists the agent facts with the three

names specified in the list

4.2.3. Exists

[<variable> <-] (exists (<factRetrieval>|<compositeClause>))

Short description 1. Perform a fact base query in order to test whether facts are available
that match a specified pattern of values without binding specified

unbound variables.

2. Performs composite clause evaluation without binding variables used
in the inner LHS.

3. Possibly subject of change/extension.

Arguments One of the constructs described under 4.2.1 Fact base retrieval.

Returns Boolean value:

 True, if one or more facts match the specified pattern

 Otherwise false

Evaluation Result True.

Description This operation performs a fact base query, searching for facts that match

the specified pattern. The pattern consists of constants and bound

variables which are assigned to slot names. All facts with equal values at
these slots are retrieved.

If one or more facts match the query, then true is written to the specified

result variable (which must not be bound), otherwise false.

If only a fact name is given, than the target of the query is the local fact
base (associated with the rule engine that evaluates the actual retrieve

clause). Remote fact bases can be accessed by specifying the name (and

instance, if required) of any agent or global rule engine.
When used with a composite clause, it performs a composite clause

evaluation without binding variables used in the inner LHS (see section

4.2.4).

Predefined slot names See 4.2.1 Fact base retrieval.

Example n/a

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 38 of 56

4.2.4. Composite of inner LHS clauses

(and <LHSClause>*)

(or <LHSClause>*)

(xor <LHSClause>*)

Short description Logical conjunction (and), disjunction (or) or exclusive disjunction

(xor) of inner LHS clauses.

Arguments Set of inner LHS clauses.

Returns Boolean value:

 True, if

o for conjunction (and), the evaluation result for all inner clauses
is true

o for disjunction (or), the evaluation result for at least on inner

clauses is true
o exclusive disjunction (xor), the evaluation result for exactly one

inner clauses is true

 Otherwise false

Evaluation Result Boolean value:
 Same as return value, if no result variable is specified

 True, if result is assigned to a (free) variable

 Otherwise false

Description This clause represents an enclosed set of LHS clauses (sub-LHS).
All bound variables from the outer LHS are also available within the sub-

LHS. The scope of variables that are bound within a composite clause

(and/or/xor statements) is the entire rule, unless an exists is specified

around the composite clause (then the scope of variables is restricted to

the inner clause).

Predefined slot names n/a

Example The "classical" if-then-else construct in declarative code: if ?num is less

than 4, then ?z will be bound with 5, otherwise with 0
(or
 (and
 (< ?num 4)
 ?z <- (is 5)
)
 ?z <- (is 0)
)
(print "the result is ?z)

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 39 of 56

4.2.5. Not operator

(not <LHSClause>)

Short description Invert the evaluation result of the inner LHS clause.

Arguments Inner LHS clause with its associated arguments.

Returns Same as inner clause.

Evaluation Result Boolean value:

 True, if the evaluation result of the inner clause is false

 Otherwise false

Description The evaluation result of the inner clause is inverted.

Predefined slot names Same as inner clause.

Example n/a

4.2.6. Foreach operator

 [<variable> <-] (each <list>)

Short description Takes a list of values and assigns the result variable with each single

value of the list by branching the LHS evaluation tree.

Arguments <list>: list of arbitrary values or facts

Returns Each single element of the list.

Evaluation Result Boolean value:
 True, if list is not empty.

 Otherwise false.

Description The clause each takes a list of (any kind of) values and assigns the result

variable with each single value of the list by branching the LHS

evaluation tree.

Predefined slot names n/a

Example ?list <- (query (global::$AGENT$))

?res <- (each ?list)

(print "?res.name says: This message will be printed as

many times as agent facts are in $AGENT$")

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 40 of 56

4.2.7. Bind operator

[<variable> <-] (is <expression>)

Short description Assign an expression to variable or use expression as clause evaluation

result.

Arguments <expression>: constant, variable, mathematical term

Returns Value of equal type as expression.

Evaluation Result Boolean value:
 Same as return value, if no result variable is specified and the

expression is of type Boolean.

 True, if result is assigned to a (free) variable.

 Otherwise false.

Description Assigns the value of expression. The expression can be a constant, a
variable or a mathematical term.

The result of the operation can be assigned to a variable, or alternatively

used as clause evaluation criteria (by omitting the result assignment).

Predefined slot names n/a

Example n/a

4.2.8. Comparative operators

[<variable> <-] (== <expression> <expression>)

[<variable> <-] (!= <expression> <expression>)

[<variable> <-] (< <expression> <expression>)

[<variable> <-] (<= <expression> <expression>)

[<variable> <-] (> <expression> <expression>)

[<variable> <-] (>= <expression> <expression>)

Short description Compare two expressions.

Arguments <expression>:

o "left expression"
o "right expression"

Returns Boolean value:

 True, if

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 41 of 56

o ==: left expression equals right expression

o !=: left expression not equal to right expression

o <: left expression is less than right expression

o <=: left expression is less than or equal to right expression

o >: left expression is greater than right expression
o >=: left expression is greater than or equal to right expression

 Otherwise false

Evaluation Result Boolean value:
 Same as return value, if no result variable is specified

 True, if result is assigned to a (free) variable

 Otherwise false

Description Performs a compare operation (specified by an operator) on two operands
specified by expressions. Each expression can be a constant, a variable or

a mathematical term.

The result of the operation can be assigned to a variable, or alternatively

used as clause evaluation criteria (by omitting the result assignment).

Predefined slot names n/a

Example n/a

4.2.9. List operators

[<variable> <-] (first <list>)

[<variable> <-] (length <list>)

[<variable> <-] (listCreate [<list>] (<list>|<expression>))

[<variable> <-] (listRemove <list> (<list>|<expression>))

[<variable> <-] (member <list> <expression>)

[<variable> <-] (nth <list> <expression>)

Short description Perform operations on a list.

Arguments <list>: the list to operate on as a bound variable

 <expression>: an element of a list (listCreate, listRemove,

member) or a number indicating an element in the list (nth)

Returns <variable>: depending on the performed operation, this is

 The number of elements in the list (length)

 The specified element of the list (first, nth)

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 42 of 56

 True, if the specified value is an element of the list; otherwise false

(member)

 The new / altered list (listCreate, listRemove)

Evaluation Result Boolean value:
 True, if result is assigned to a (free) variable

 Otherwise false

Description The different list operators perform operations on a given list. The unary

operators first and length take only the list as argument and return its

first element and its length (number of elements), respectively. The binary

operators listCreate, listRemove, member and nth take an

expression as a second argument, which specifies either (an element of) a

list or – in the case of nth – a number.

The result of the operation is assigned to a variable.

Predefined slot names n/a

Example n/a

4.2.10. Set operators

[<variable> <-] (contains <set> <expression>)

[<variable> <-] (intersect <set> <set>)

[<variable> <-] (setCreate [<set>] (<set>|<list>|<expression>))

[<variable> <-] (setRemove <set> (<set>|<list>|<expression>))

[<variable> <-] (size <set>)

[<variable> <-] (union <set> <set>)

Short description Perform operations on a set.

Arguments <set>: the set to operate on as a bound variable

 <expression>: an element of a set

Returns <variable>: depending on the performed operation, this is

 The number of elements in the set (size)

 True, if the specified value is an element of the set; otherwise false

(contains)

 The new / altered list (listCreate, listRemove)

 The intersection of the two specified sets (intersect)

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 43 of 56

 The union of the two specified sets (union)

Evaluation Result Boolean value:
 True, if result is assigned to a (free) variable

 Otherwise false

Description The different set operators perform operations on a given set. The unary

operator size takes only the set as argument and returns its size (number

of elements). The binary operators listCreate, listRemove,

contains, intersect and union take either another set as a second

argument or an expression, which specifies an element of the set.
The result of the operation is assigned to a variable.

Predefined slot names n/a

Example n/a

4.2.11. Accumulator

[<variable> <-] (avg (<factList> <slotName>)|(<list>))

[<variable> <-] (count (<factList> <slotName>)|(<list>))

[<variable> <-] (list <factList> <slotName>)

[<variable> <-] (max (<factList> <slotName>)|(<list>))

[<variable> <-] (min (<factList> <slotName>)|(<list>))

[<variable> <-] (set <factList> <slotName>)

[<variable> <-] (sum (<factList> <slotName>)|(<list>))

Short description Perform accumulating operations on a fact list.

Arguments Processing of fact lists:

o <factList>: the list of facts (usually the result of a query) to

operate on as a bound variable

o <slotName>: the name of a slot in the shared fact template of

the facts in the list; the corresponding slot values have to be

numerical for the mathematical operators avg, max, min

and sum to work.

 Processing of other lists:

o <list>: the list of (any kind of) values

Returns <variable>: depending on the performed operation, this is

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 44 of 56

 A number: the average, maximum, minimum or sum of the specified

slot/list values (avg, max, min, sum) or the number of slot

values/list elements (count)

 A new list containing all values of the specified slot as elements

(list)

 A new set containing all unique values of the specified slot as

elements (set)

Evaluation Result Boolean value:
 True, if result is assigned to a (free) variable

 Otherwise false

Description The different accumulator operators perform operations on a given list of
facts, which is usually the result of a fact base query, or on a list of any

kind of values. The mathematical operators avg, max, min and sum

expect numerical values as slot values, whereas the other operators

(count, list, set) work on any type of slot value.

The result of the operation is assigned to a variable.

Predefined slot names n/a

Example n/a

4.2.12. Deftype components

[<variable> <-] (components <type_definition>)

Short description List components of the specified deftype.

Arguments <type_definition>: any type definition defined in the model.

Returns <variable>: a list of components for the specified deftype

Evaluation Result Boolean value:

 True, if type definition exists

 Otherwise false

Description The clause returns a list of components for any defined type definition in

the model.

Predefined slot names n/a

Example With this clause, there are (at least) two solutions for the problem to select
on of the components of a deftype by chance (if all components of the

deftype have equal probabilities):

1. using clauses for each step:

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 45 of 56

?comps <- (components "SomeDeftype")
?numComps <- (length ?comps)
?rndSel <- (is {uchicago.src.sim.util.Random.

uniform.nextIntFromTo(0, ?numComps:Integer - 1)})
?result <- (nth ?comps ?rndSel)

2. using the Java capabilities of expressions (obviously, this code

fragment is shorter, but needs proper documentation...):
?comps <- (components "SomeDeftype")
?result <- (is

{(?comps:Object[])[uchicago.src.sim.util.
Random.uniform.nextIntFromTo(0,
(?comps:Object[]).length - 1)]})

4.2.13. Symbol generator

[<variable> <-] (gensym <symbol>)

[<variable> <-] (genuuid)

Short description Binding variables to different kinds of values.

Arguments <symbol>: The string that will be root word for the generated symbol.

Returns <variable>: depending on the performed operation, this is

 unique symbol, consisting of the specified symbol string,

concatenated with an unique number (gensym <symbol>)

 new UUID (genuuid)

Evaluation Result Boolean value: True

Description Two clauses for binding variables to different content:

 (gensym <symbol>) - generates an unique symbol, consisting of

the specified symbol string, concatenated with an unique number.

 (genuuid) - generates a new UUID.

Predefined slot names n/a

Example ?sym <- (gensym household) - each time this clause is unified, a

string of the kind "household-000", "household-001" etc. is bound to

variable ?sym

 ?id <- (genuuid)

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 46 of 56

4.2.14. Print

(print [prio <int_value>] "<printString>")

Short description Prints a string to the console.

Arguments <printString>: The string that will be printed to the console.

Optional prio <int_value>: Priority of the print statement.

Returns Nothing

Evaluation Result Boolean value: True

Description The specified string is printed to the console. The string may contain an

arbitrary number of words or tokens. Any token beginning with a "?"

character is assumed to be a variable name; if a bound variable with this

name exists, then the content of this variable is inserted in the output,

otherwise the original token is printed.

Predefined slot names n/a

Example n/a

4.2.15. Call

[<variable> <-] (call <methodName> ([<expression> [, <expression>]*]))

Short description Calls a Java method.

Arguments <methodName>: the set to operate on as a bound variable

 <expression>: method parameter

Returns The return value of the method.

Evaluation Result Boolean value:

 True, if the method was executed successfully

 Otherwise false

Description A Java method with the specified name and zero, one or more parameters

is invoked. The return value of the method can be used to bind a free

variable.

The method to be called must be member of the agent class the rule with
this clause belongs. Possibly subject of change/extension.

Predefined slot names Same as inner clause.

Example n/a

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 47 of 56

4.2.16. Agent birth and death

(create <agent_type> <agent_name>)

(kill <agent_type> <agent_name>)

Short description Triggers birth/death of an agent instance.

Arguments <agent_type>: class identifier (string) of the agent to create

 <agent_name>: the name (string) of the instance

Returns Nothing.

Evaluation Result Boolean value:

 True, if the action was executed successfully

 Otherwise false

Description Two clauses for agent birth and death processes:

 create: creates a new agent instance for the specified agent class with

the specified name;

 kill: removes an agent instance of the specified agent class and

name.
Two call-back methods for DRAMS (createAgent() and killAgent())

related to create and kill clauses are defined in the model interface. These

should be implemented/adapted in the model super class according to the
simulation tool specific agent management.

Predefined slot names n/a

Example (create ?type ?name)
(kill ?type ?name)

4.2.17. Breakpoint

(halt)

Short description Breakpoint definition.

Arguments n/a

Returns Nothing.

Evaluation Result Boolean value:

 True, if the action was executed successfully

 Otherwise false

Description This clauses causes the simulation timer to pause or halt the simulation
run, according to the simulation tool specific implementation of the

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 48 of 56

related halt() method, defined in the model interface.

Predefined slot names n/a

Example n/a

4.3. RHS CLAUSES

4.3.1. Fact assertion

(assert [permanent] [<deferment>] (<factDescr> <slot>*))

Short description Asserts a new fact to a fact base.

Arguments <factDescr>: name of the fact to be asserted, possibly combined

with fact base owner description.

 <slot>: pairs of (<slotName> <constant>) or (<slotName>

<boundVariable>) specifying the content to be asserted

 Optional <deferment>: the number of ticks after which the

assertion will be valid.

Description A new fact with name, target fact base and content as specified is

asserted. The new fact can be made permanent, if the keywords assert

permanent instead of assert are used. If no deferment value is

specified, the timestamp of the new fact will be the current simulation

time, otherwise it will be increased by the deferment value.

Predefined slot names n/a

Example n/a

4.3.2. Fact retraction

(retract [<deferment>] (<factDescr> <slot>*))

(retract [<deferment>] <factVariable>)

Short description Retracts a fact from a fact base.

Arguments <factDescr>: name of the fact to be retracted, possibly combined

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 49 of 56

with fact base owner description.

 <slot>: pairs of (<slotName> <constant>) or (<slotName>

<boundVariable>) specifying the content of the fact to be

retracted.

 <factVariable>: variable bound to a fact to be retracted.

 Optional <deferment>: the number of ticks after which the

retraction will be valid.

Description A fact with name, target fact base and (optional) content as specified is
retracted. Alternatively a fact bound to a variable is retracted. If no

deferment value is specified, the time at which the fact will become

invalid will be the current simulation time, otherwise it will be increased

by the deferment value.

Predefined slot names n/a

Example n/a

4.3.3. Output writing

(sample (<writer_name> <slot>*))

(write (<writer_name> <slot>*))

Short description Pass data to output writers.

Arguments <writer_name>: name of the fact to be asserted, possibly

combined with fact base owner description.

 <slot>: pairs of (<slotName> <constant>) or (<slotName>

<boundVariable>) specifying the content to be written

Description To pass data to output writers, the following RHS-clauses (which are used

in the same way as assert clauses) are available:

1. Sample data for later writing: (sample (<writer_name>

<slot>*))

2. Write a previously sampled or new data set: (write

(<writer_name> <slot>*)).

Predefined slot names n/a

Example (sample (myWriter (value1 24) (value2 ?sym))) - samples

the specified data with actual meta information (rule name,

simulation time etc.)

 (write (myWriter)) - writes all previously sampled data to the

destination (file) of the output writer. The meta information of the

data fields are kept untouched, the actual meta information is

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 50 of 56

attached to the entire data set.

 (write (myWriter (value1 25) (value2 ?sym))) - writes the

specified data to the destination (file) of the output writer. Actual

meta information is attached to the data fields and to the entire data

set.

4.3.4. Print

(print "<printString>")

Short description Prints a string to the console.

Arguments <printString>: The string that will be printed to the console.

Optional prio <int_value>: Priority of the print statement.

Description The specified string is printed to the console. The string may contain an

arbitrary number of words or tokens. Any token beginning with a "?"

character is assumed to be a variable name; if a bound variable with this

name exists, then the content of this variable is inserted in the output,
otherwise the original token is printed.

Predefined slot names n/a

Example n/a

4.3.5. Call

(call <methodName>([<expression> (, <expression>)*]))

Short description Calls a Java method.

Arguments <methodName>: the set to operate on as a bound variable

 <expression>: method parameter

Description A Java method with the specified name and zero, one or more parameters

is invoked. The return value of the method can be used to bind a free
variable.

The method to be called must be member of the agent class the rule with

this clause belongs. Possibly subject of change/extension in future.

Predefined slot names Same as inner clause.

Example n/a

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 51 of 56

4.3.6. Agent birth and death

(create <agent_type> <agent_name>)

(kill <agent_type> <agent_name>)

Short description Triggers birth/death of an agent instance.

Arguments Two clauses for agent birth and death processes:

Description create: creates a new agent instance for the specified agent class with the

specified name;

Predefined slot names n/a

Example (create ?type ?name)
(kill ?type ?name)

4.3.7. Breakpoint

(halt)

Short description Breakpoint definition.

Arguments n/a

Description This clauses causes the simulation timer to pause or halt the simulation

run, according to the simulation tool specific implementation of the
related halt() method, defined in the model interface.

Predefined slot names n/a

Example n/a

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 52 of 56

5. REFERENCES

[1] S. Moss, R. Meyer, U. Lotzmann, M. Kacprzyk, M. Roszczynska and C. Pizzo, “D5.1 Scenario,
policy model and rule-based agent design. Deliverable 5.1,” OCOPOMO, 2010.

[2] M. Mach et al, D2.1 Platform Architecture and Functional Description of Components. Deliverable

2.1, OCOPOMO consortium, 2010.

[3] U. Lotzmann and R. Meyer, “DRAMS - A Declarative Rule-Based Agent Modelling System,” in

25th European Conference on Modelling and Simulation, ECMS 2011, T. Burczynski, J.

Kolodziej, A. Byrski and M. Carvalho, Eds., Krakow, SCS Europe, 2011, pp. 77-83.

[4] U. Lotzmann and R. Meyer, “A Declarative Rule-Based Environment for Agent Modelling

Systems,” in The Seventh Conference of the European Social Simulation Association, ESSA 2011,
Montpellier, 2011.

[5] U. Lotzmann und M. A. Wimmer, „Provenance and Traceability in Agent Based Policy
Simulation,“ in s The 26th European Simulation and Modelling Conference, ESM 2012, Essen,

2012.

[6] U. Lotzmann und M. A. Wimmer, „Traceability in Evidence-based Policy Simulation,“ in s 27th

European Conference on Modelling and Simulation, ECMS 2013 (accepted), Alesund, 2013.

[7] S. Scherer et al, D8.1 Manual of the Methodology for Process Development and Guide to Policy

Modelling Toolbox. Deliverable 8.1, OCOPOMO consortium, 2013.

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 53 of 56

6. ANNEXES

6.1. DRAMS SYNTAX KEYWORDS

 Keyword Category

Top level deflog Log writer

defoutput Output writer

defrule Rules

deftemplate Fact templates

deftype Type definitions

execrule Console Window

insertfact Facts

insertfacts Facts

Tags
6
 @link Traceability and links

LHS < Comparative operators

<= Comparative operators

== Comparative operators

!= Comparative operators

> Comparative operators

>= Comparative operators

and Composite of inner LHS clauses

avg Accumulator

call Call

contains Set operators

count Accumulator

create Agent birth and death

each Foreach operator

exists Exists

first List operators

gensym Symbol generator

genuuid Symbol generator

halt Breakpoint

intersect Set operators

is Bind operator

kill Agent birth and death

length List operators

6 in comments

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 54 of 56

list Accumulator

listCreate List operators

listRemove List operators

max Accumulator

member List operators

min Accumulator

not Not operator

nth List operators

or Composite of inner LHS clauses

print Print
query Fact base queries

set Accumulator

setCreate Set operators

setRemove Set operators

size Set operators

sum Accumulator

union Set operators

xor Composite of inner LHS clauses

RHS assert Fact assertion

call Call

create Agent birth and death

halt Breakpoint

kill Agent birth and death

print Print

retract Fact retraction

sample Output writing

write Output writing

General < Slot compare operators, Log output

<= Slot compare operators, Log output

== Slot compare operators, Log output

!= Slot compare operators, Log output

> Slot compare operators, Log output

>= Slot compare operators, Log output

<> Slot compare operators, Log output

!<> Slot compare operators, Log output

<=> Slot compare operators, Log output

!<=> Slot compare operators, Log output

* Clauses
after Lag modes
all Lag modes
at Lag modes

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 55 of 56

before Lag modes
deferredBy Clauses, Fact assertion, Fact retraction
lag Lag modes
lagAfter Lag modes
lagBefore Lag modes
last Lag modes
latest Lag modes
recent Lag modes (reserved)
relAfter Lag modes
relAt Lag modes
relBefore Lag modes
permanent Facts, Fact assertion
prio Log writer, Print (LHS), Print (RHS)

6.2. FREQUENTLY ASKED QUESTIONS

6.2.1. How can output writers be used?

Here is a more concrete code example how to write numerical data into csv files:

1. Put the writer definition in one of the .drams files, e.g. in code.drams. Hereby the head of the

table that will be created is defined, i.e. "value1" to "value3" are the column headers:
(defoutput csv "nameOfResultFile" (value1:Double) (value2:Integer)
(value3:Double))

2. If all the three values that have to be written into the csv file are available in one and the same

rule, just put a write statement in the RHS of that rule:
(write (nameOfResultFile (value1 ?resultValue1) (value2 ?resultValue2) (value3
?resultValue3)))

Alternatively, if e.g. the three different result values are produced by two different rules, the procedure

can be as follows:

3a. Sample the result values:

(defrule rule1
 ...
=>
 (sample (nameOfResultFile (value1 ?resultValue1) (value3 ?resultValue3)))
 ...
)

(defrule rule2
 ...
=>
 (sample (nameOfResultFile (value2 ?resultValue)))

D4.2 SYSTEM AND USER DOCUMENTATION

C: USER MANUAL ON POLICY MODELLING

AND SIMULATION TOOLS

v.1.00

04/04/2013

 Page 56 of 56

 ...
)

3b. Write the current sample to the file e.g. by another rule. The only issue here is that it has to be
taken care that the rule writing the result is executed subsequent to rule1 and rule2:

(defrule rule3
 ...
=>
 (write (nameOfResultFile))
 ...
)

If, for some reason, it is intended to write the data into an xml file instead of the csv file, "csv" has to
be replaced with "graph-xml" in the writer definition. No other changes are necessary.

6.2.2. What should be noted when using the DRAMS Java API?

When accessing fact bases from Java model code, the following issues should be regarded:

 There are several query methods to be used from Java code, but for the moment only one method

should be used:
Collection<IFact> query(String name, String owner, Double timeStamp,

String[] slots, Object[] values)

 The result of all query methods is not of type List<IFact> (as it was in old DRAMS versions)

but rather of type Collection<IFact>. Furthermore, there won't be a List object behind the

Collection, in fact, at the moment it is a HashSet (but this also cannot be guaranteed for future

version). As a consequence, if a special type of collection is needed for further processing (e.g. an

ArrayList), then a new Instance of this particular collection type has to be instantiated and

filled with the collection returned by the query:
List<IFact> factList = new ArrayList<IFact>(

globalFB.query("boroughCharacteristics", globalFB.getOwner(), 0.0, null,

null));

