

OCOPOMO

Open Collaboration in Policy
Modelling

D 4 . 2 S Y S T E M A N D U S E R

D O C U M E N T A T I O N

S D - 3 : S Y S T E M D O C U M E N T A T I O N

O F D R A M S T O O L S

Document Full Name OCOPOMO_D4.2-SD3_DRAMS-SysDoc.doc

Date 28/04/2013

Work Package WP4: Integration of components

Lead Partner Intersoft

Authors Ulf Lotzmann

Document status v1.00 FINAL

Dissemination level PUBLIC (PU)

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 2 of 35

TABLE OF CONTENTS

1. INTRODUCTION ... 3

2. DESIGN AND IMPLEMENTATION .. 4

2.1. CLASS DIAGRAMS ... 4
2.2. IMPORTANT COMPONENTS .. 6

2.2.1. RuleEngineManager .. 6

2.2.2. RuleEngine.. 8

2.2.3. RuleSchedule and related classes ... 8

2.2.4. DependencyGraph ... 9

2.2.5. FactBase.. 11

2.2.6. Fact ... 12

2.2.7. SimpleShadowFact .. 13

2.2.8. ShadowFact ... 14

2.2.9. RuleBase and Rule .. 15

2.2.10. AbstractClause (and concrete clause classes) ... 16

3. EXTENDING DRAMS ... 19

3.1. DRAMS INSTALLATION.. 19
3.2. PLUG-IN DEVELOPMENT .. 20
3.3. ADDING CLAUSE OPERATORS.. 21
3.4. ADDING CLAUSES ... 22
3.5. ADAPTION TO SIMULATION TOOLS .. 22

REFERENCES ... 24

ANNEX - VERSION HISTORY .. 25

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 3 of 35

1. INTRODUCTION

DRAMS, the Declarative Rule-based Agent Modelling System, provides the necessary rule engine

functionality to enable modellers in the OCOPOMO project to develop declarative agent-based
simulation models as discussed in (Moss et al, 2011).

The information necessary to develop simulation models is given in the user manual (Lotzmann and

Meyer, 2013). Also refer to this manual for an functional outline on DRAMS and details about the rule

scheduling algorithm.

This document is dedicated to developers who plan to modify or extend the DRAMS software core, or

to implement extensions to DRAMS in terms of plug-ins and simulation tool interfaces.

Structure of the document:

 Chapter 2 gives an overview on the structure of the DRAMS software (section 2.1) and points

out details on the most important components of the DRAMS core (section 2.2 and its sub-

sections).

 Chapter 3 gives instructions on how to add functionality or external features to DRAMS.

 In the Annex a version history of the DRAMS software is attached.

DRAMS_JavaDoc.zip - see also the accompanying zip package that contains the
documented source code of the DRAMS software in the JavaDoc format.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 4 of 35

2. DESIGN AND IMPLEMENTATION

DRAMS is implemented as an extension framework for established Java-based simulation tools. It

provides declarative rule-engine functionality to such frameworks, while, on the other hand, it is not

dependent on a specific architecture.

Figure 1 gives an overview of components making up an complete simulation system. The simulation
framework (in this case Repast) determines the basic architecture of the model. Usually there will be a

single model class and a number of agent classes, with simulation executions functionality provided

by a simulation scheduler. DRAMS as the declarative rule engine parts offers its features basically to
the model and agent classes. While the experimentation font-end is in any case part of the applied

simulation tool with an additional user interface for DRAMS, the modelling front-end should be an

integrated development environment, e.g. based on the Eclipse platform

Modelling front-end Experimentation front-end

Declarative rule engine (DRAMS) Simulation framework (Repast)

Modelling UI

- definition of agent types

- definition of facts and rules

- visualisation of dependency

 graphs

Experimentation UI
- import configurations

- export simulation data

- control simulation runs

FactBaseRuleBase

RuleEngine SimulationSchedule

Model

Agent

RuleSchedule

Figure 1: Component diagram of a DRAMS-based simulation model.

2.1. CLASS DIAGRAMS

Figure 2 shows an overview of the relevant DRAMS classes, including the interface to an existing

agent-based simulation toolkit (Repast). At the moment, DRAMS provides abstract Agent and Model
classes to facilitate the integration with Repast. A modeller using DRAMS and Repast only needs to

subclass these abstract classes to gain access to the declarative features of DRAMS within the

simulation environment of Repast (Moss et al, 2011).

The classes and interfaces of the DRAMS core software can be assigned to five different functional

blocks:

 the DRAMS Core block with the rule engine and related managing functionality;

 the Data block providing the working memory (fact bases and fact implementations);

 the Rule block covering functionality for rule management and processing;

 the Scheduler block that takes care of appropriate rule evaluation and firing;

 the Repast Model block as interface to the simulation tool.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 5 of 35

RulesDataScheduler

DRAMS Core
«interface»

IRuleProcessingFacility

RuleEngineManager RuleEngine

1

-ruleEngines

*

FactBase RuleBase

RuleSchedule

1

-globalFactBase

1

1

-factBase1

1

-currentSchedule1

Event

1
-schedule*

Task

1
-tasks*

AbstractScheduleAction

1
-actions*

ActionProcessPendingOperations ActionRuleFire

-instances

*

1

«interface»

IFact

FactBaseEntry SimpleShadowFact

1

-shadowFacts*

1

-facts*

Fact

1
-facts*

DependencyGraph

1

-dataDepGraph1

-ddg1

1

1

-ruleBase1

Rule

1
-rules*

AbstactClause«interface»

ILHSClause

«interface»

IRHSClause

Repast Model
ModelClass AgentClass1

-ruleSchedule

1

1 *

1

-ruleEngine

1

1

*

1

*

ShadowFact

«subsystem»

LHS Clauses

«subsystem»

RHS Clauses

«subsystem»

Common Clauses

Figure 2: Simplified class diagram of DRAMS (and its integration in Repast models).

A more detailed overview on the currently available (stable) clause classes is shown in Figure 3. There

can be three categories of clause classes be distinguished:

 clauses only dedicated for the left-hand side, implementing the ILHSClause interface;

 clauses only dedicated for the right-hand side, implementing the IRHSClause

interface;

 clauses that can be used at both rule parts, implementing both interfaces.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 6 of 35

Common Clauses

LHS Clauses RHS Clauses

«interface»

IRHSClause

AbstactClause«interface»

ILHSClause

JavaActionClause

FactActionClause

ActionClauseAssert

ActionClauseRetract

RetrieveClause

OperatorClause

ListOperatorClause

SetOperatorClause

QueryClause

AccumulatorClause

ExistsRetrieveClause

NotClause

CompositeClause

OutputActionClause

Figure 3: Clauses sub-system.

2.2. IMPORTANT COMPONENTS

The following sections are intended to shed light on some of the core DRAMS classes which are
playing a prominent role for the system. This information is primarily dedicated to developers who

want to extend or modify DRAMS, but it can also be useful for understanding of the concepts

DRAMS is build upon (e.g. Shadow Facts). For further details, please refer to the DRAMS JavaDoc
pages and in-code comments.

2.2.1. RuleEngineManager

The RuleEngineManager class, presented in Figure 4, is a singleton class that represents the hub of

the DRAMS core and implements the rule engine manager and global rule engine. It manages default
fact and rule bases for all agent types, together with related rule engine instances, and calculates the

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 7 of 35

overall dependency graphs from information stored in the default bases. The dependency graphs are

base for creating rule schedules.

Figure 4: RuleEngineManager class and related structures.

As the global rule engine the RuleEngineManager extends the RuleEngine class. It hosts a fact

base mainly for administrative facts like simulation time and a directory of all agent instances in the
simulation, but can also be used for storing "world knowledge" (e.g. facts describing physical

conditions of the simulation world and relations between them).

The RuleEngineManager is also hub for rule engine management and dynamics. Information on all

rule engine instances in the system are stored in RuleEngineContainer objects. For simulation

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 8 of 35

runs, dependency graphs are calculated, RuleSchedule objects are instantiated and fact base

activities are registered.

2.2.2. RuleEngine

The RuleEngine class, depicted in Figure 5, implements IRuleProcessingFacility, which

defines the interface for managing necessary information, accessing rule and fact bases, and to execute
rules and declarative code.

A rule engine object is bound to an agent (or in general Java object) and hosts the agent's rule and fact

bases and controls the inference process.

Figure 5: RuleEngine class and IRuleProcessingFacility interface.

2.2.3. RuleSchedule and related classes

The RuleSchedule class, presented in Figure 6, implements the data-driven rule schedule, relying on

the data dependency graph. It manages the events to be processed (objects of the Event class), while

each Event object stores a number of tasks (objects of the Task class). During processing of all tasks

within an event, fact bases do not change. The RuleSchedule is responsible for determining all rules

which can be processed due to available facts, scheduling of these rules and finally controlling the

evaluation and firing.

For rule processing facilities (rule engine instances), a task encompasses either a single rule
processing, or a (deferred) fact base operation. These activities are described by objects of the

ActionRuleFire class or the ActionProcessPendingOperations class, respectively. Both

classes inherit from the AbstractScheduleAction class.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 9 of 35

Figure 6: RuleSchedule class with classes representing the time structure (Event and Task) and

actions (AbstractScheduleAction with subclasses).

2.2.4. DependencyGraph

The DependencyGraph class, presented in Figure7, provides the interface to any kind of dependency

graphs used in the DRAMS core (i.e. both the DDG and the RDG). It provides methods for adding

vertices, edges and typical combination of both (e.g. incoming fact vertex to a specific rule vertex with

an edge representing this relation). It also implements the operations necessary for rule scheduling and
other duties (e.g. calculations, processing data for visualisation).

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 10 of 35

Figure 7: DependencyGraph main class.

The structure of inner classes involved in the DependencyGraph is shown in Figure 8.

Figure 8: Class hierarchy for representing the actual dependency graphs.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 11 of 35

2.2.5. FactBase

The FactBase class, presented in Figure 9, implements the fact base with functionality for adding,

retracting, retrieving and querying facts. It can host both regular facts stored in the internal data

structures, as well as shadow facts which are data container stored in other (agent) objects. Facts can
either be inserted and retracted immediately, or these operations are buffered and executed later (at

specified points of time) when the processing of pending operations is requested. For regular fact, fact

templates should be defined. These are used to verify inserted facts.

Figure 9: FactBase main class.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 12 of 35

The actual facts are stored in FactBaseEntry objects, depicted in Figure 10. This class also provides

functionality for storing fact template information, and do verifications tests of fact content against the

template specification.

Figure 10: FactBaseEntry class encapsulating the fact management for a single fact template.

2.2.6. Fact

The Fact class, presented in Figure 11, represents a fact. It stores some administrative data like name,

owner, time of creation, a flag whether the fact is available permanent, and the content. The content is

organised in terms of pairs of slot names and values.

The general interface IFact defines the methods for all kinds of facts, and is, thus, implemented by

Fact.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 13 of 35

Figure 11: Fact class with related IFact interface.

2.2.7. SimpleShadowFact

The generic SimpleShadowFact class, presented in Figure 12, implements an way to access data

stored in fields of a Java class from within DRAMS rules. Attributes of this class can be declared and

instantiated in agents, the objects must be inserted in the desired fact base (by insertFact()). If

data stored in the shadow fact changes (either by SimpleShadowFact.setValue or

SimpleShadowFact.notifyChange), the scheduler regards this as a newly available fact. In the

current implementation, content of SimpleShadowFact objects cannot be changed within clauses.

Otherwise, after inserting a shadow fact into a fact base they can be used in clauses like regular facts,

but for each fact name there will be only one single instance.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 14 of 35

Figure 12: SimpleShadowFact class with inheritance hierarchy.

2.2.8. ShadowFact

Objects of the ShadowFact class, depicted in Figure 13, provide the possibility to integrate arbitrary

Java objects into agents’ fact bases, thus allowing the agents to include these objects in their reasoning
just like any other facts. This is particularly useful in complex declarative simulation models like the

ones developed in the OCOPOMO project, where part of the model will be implemented imperatively

in Java, Repast or any other agent simulation platform. Shadow facts can be used to represent data that
needs to be shared between the declarative (DRAMS) and imperative (Java/Repast) environments of

the model. While it would be possible to duplicate the necessary information by inserting regular facts

containing this information into the fact base, this approach has several disadvantages.

1. it is memory intensive,

2. it can lead to bugs in the code (e.g. by accidentally missing out an attribute or not copying the

correct value), and

3. keeping up to date with any changes in the corresponding Java object is equally error-prone.

To avoid these disadvantages, a shadow fact is connected to its Java object and keeps track of any

changes automatically. There are a number of constraints a modeller must adhere to in order to make

this work:

 The class definition for any object to be used as a shadow fact has to support the use of

java.beans.PropertyChangeListerners, i.e. it has to implement the methods

addPropertyChangeListener(PropertyChangeListener listener) and

removePropertyChangeListener(PropertyChangeListener listener), as well as

firing PropertyChangeEvents in all setter methods. This ensures that DRAMS is notified

about any changes to the shadow fact object happening in the Java part of the model.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 15 of 35

 To assert a shadow fact, the corresponding Java object has to be created first and then inserted

into the fact base using insertFact(new ShadowFact(<object>). The shadow fact will

have a slot for each publicly accessible attribute (setter method declared public). In addition, it

will have a slot “class” containing the class name, and a slot “OBJECT” containing a

reference to the Java object.

 As the current version of DRAMS does not yet implement a modify clause, shadow facts can

only be changed from within rules by calling the corresponding setter method on the

associated object or by retracting the shadow fact and asserting a new shadow fact with the

updated value(s).

Figure 13: ShadowFact class with inheritance hierarchy.

2.2.9. RuleBase and Rule

Figure 14 shows the class hierarchy of the rule management and processing facility of DRAMS. A

RuleBase object stores an arbitrary number of Rule objects.

The Rule class implements the functionality to manage both parts of the rule,

1. the left-hand side, represented by the LHSComponent class, and

2. the right-hand side, represented by the RHSComponent class.

The LHSComponent deals with storing and evaluating LHS clauses. The different evaluation modes

(AND, OR, XOR) are represented by the enumeration EvaluationMode. During and after

evaluation, the evaluation results are stored in LhsClauseInfo objects.

The RHSComponent is responsible for storing RHS clauses and control the execution of these clauses

(the "rule firing" process).

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 16 of 35

Figure 14: Class diagram for rule management and processing.

2.2.10. AbstractClause (and concrete clause classes)

For implementations of concrete clause classes, a AbstractClause super class is available, as

depicted in Figure 15. A number of constructors are defined, which allow to create clause objects

either by Java methods or from declarative code. Concrete clause implementation can access assigned
and requested variables with corresponding methods, as well as the related rule and parser objects. The

abstract methods evaluate() and getExpression() have to be implemented by the clause classes.

Table 1 gives an overview on the concrete clause classes implemented so far (or currently under
development). Also the relations to parser classes and DRAMS language identifiers are shown. More

detailed documentation for these clause classes can be found in the DRAMS JavaDoc

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 17 of 35

Figure 15: AbstractClause class.

Table 1: Available concrete clause class implementations.

Clause class LHS/
RHS

Operators Clause in DRAMS
language

Description Associated
parser

AccumulatorClause LHS SUM (sum ...) Accumulating operations
on lists and sets.

ClauseParser_
Accumulator.jj AVG (avg ...)

MIN (min ...)

MAX (max ...)

COUNT (count ...)

LIST (list ...)

SET (set ...)

ActionClauseAssert RHS - (assert ...) Fact assertion. ClauseParser_

Assert.jj

ActionClauseRetrac
t

RHS - (retract ...) Fact retraction. ClauseParser_
Retract.jj

CompositeClause LHS - (and ...)

(or ...)

(xor ...)

(exists (and ...))

(exists (or ...))

(exists (xor ...))

Logical conjunction,
disjunction or exclusive
disjunction of inner LHS
clauses.

Parser_Rule.jj

ExistsClause LHS - Universal exists clause.

Under development.

ExistsRetrieveClau
se

LHS - (exists ...) Exists clause for fact base
retrievals.

ClauseParser_
Exists.jj

FactActionClause RHS - - Abstract super class for
RHS fact base operations.

-

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 18 of 35

JavaActionClause LHS/
RHS

PRINT (print ...) Console printing. ClauseParser_
JavaAction.jj CALL (call ...) Java method call.

HALT (halt) Breakpoint.

CREATE (create ...) Creating agent instances.

KILL (kill ...) Removing agent instance.

ListOperatorClause LHS FIRST (first ...) List operations. ClauseParser_
ListOperator.jj LENGTH (length ...)

MEMBER (member ...)

NTH (nth ...)

CREATE (listCreate ...)

REMOVE (listRemove ...)

NotClause LHS - (not ...) Inverting the evaluation
result of the inner LHS

clause.

Parser_Rule.jj

NoTriggerClause LHS - Flag clause for retrieve,
query and fact retrieve
clauses that should not
schedule rule for
evaluation.

Under development.

OperatorClause LHS LESS_THAN (< ...) Compare operator. ClauseParser_

Operator.jj LESS_THAN_OR_EQUAL (<= ...) Compare operator.

GREATER_THAN (> ...) Compare operator.

GREATER_THAN_OR_EQUAL (>= ...) Compare operator.

INEQUAL (!= ...) Compare operator.

EQUALS (== ...) Compare operator.

BIND (is ...) Variable assignment.

FOREACH (each ...) Assigning the result
variable with each single
value of a given list.

GENSYM (gensym ...) Bind variable to numbered

symbol.

GENUUID (genuuid ...) Bind variable to generated
UUID.

TYPECOMPONENTS (components ...) List deftype components.

OutputActionClause RHS SAMPLE (sample ...) ClauseParser_
OutputAction.jj WRITE (write ...)

QueryClause LHS - (query ...) Provide a list of facts as
result from a fact base
query matching a specified

pattern of values.

ClauseParser_
Query.jj

RetrieveClause LHS - (<factDescr> ...) Retrieve sets of variable
assignments from a fact
base query matching a

specified pattern of values.

ClauseParser_
Retrieve.jj

SetOperatorClause LHS SIZE (size ...) Set Operations. ClauseParser_
SetOperator.jj CREATE (setCreate ...)

CONTAINS (contains ...)

UNION (union ...)

INTERSECT (intersect ...)

REMOVE (setRemove ...)

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 19 of 35

3. EXTENDING DRAMS

3.1. DRAMS INSTALLATION

For development purposes, DRAMS is available as an Eclipse project which can be installed via SVN

server. Stable versions are available as packed *.jar files; please refer user manual for detailed
information (Lotzmann and Meyer, 2013). All necessary libraries (e.g. RepastJ 3.1) are included in the

DRAMS-SVN project.

The following steps have to be accomplished in order to set up the Simulation Environment:

 Download and install Eclipse

o A recent version (currently Indigo or Juno) of one of the following Eclipse packages is

needed:

 Eclipse Classic

 Eclipse IDE for Java EE Developers

 Eclipse IDE for Java Developers

o Packages can be downloaded from http://www.eclipse.org/downloads/

 Install SVN Eclipse plugin

o Easiest way: Subversive (Eclipse project feature)

 Can be installed via Eclipse plugin manager (menu Help Install New

Software...)

 Chose “Work with”: Indigo, Helios or whatever Eclipse version is used

 Select Subversive packages, can be found under theme Collaboration

 Install features...

 When installing the SVN connector (after Eclipse restart), select a version

suitable for use with SVN 1.5.x

o Alternative: Subclipse, http://subclipse.tigris.org/

 Install DRAMS editor Eclipse plugin (optional)

o Eclipse feature can be installed from the UKL OCOPOMO Eclipse Update Site at
http://userpages.uni-koblenz.de/~ocopomo/release

(access data - user name: ocopomo, password: Q$st*!56)

 Access to OCOPOMO SVN server

o In order to obtain login data for the SVN server, please send a request to

ocopomo@uni-koblenz.de.

 Check out DRAMS from SVN

o In Eclipse workbench, import DRAMS to the workspace:

 Chose menu File Import

 Select SVN Project from SVN

 Enter the following URLs and provide the user account information:

https://svn.uni-koblenz.de/ocopomo/wp5/implementation/branches/DRAMS-

developer/

 Finish the check out process

 Check out supporting Eclipse projects from SVN

o Proceed in a similar way as described under 5. for:

 DRAMS Platforms (model super class for specific simulation tools, currently

only RepastJ 3.1; needed!):

http://www.eclipse.org/downloads/
http://subclipse.tigris.org/
http://userpages.uni-koblenz.de/~ocopomo/release
mailto:ocopomo@uni-koblenz.de
https://svn.uni-koblenz.de/ocopomo/wp5/implementation/branches/DRAMS-developer/
https://svn.uni-koblenz.de/ocopomo/wp5/implementation/branches/DRAMS-developer/

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 20 of 35

https://svn.uni-koblenz.de/ocopomo/wp5/implementation/branches/DRAMS-

platforms/

 DRAMS plugins:
https://svn.uni-koblenz.de/ocopomo/wp5/implementation/branches/DRAMS-

plugins/

3.2. PLUG-IN DEVELOPMENT

The procedure for implementing a plug-in for DRAMS comprises the implementation of a number of

interfaces shown in Figure 16 by performing the following steps:

1. Implementing the IPluginDescriptor interface by a class with the qualified name

"drams.plugin.PluginDescriptor.java" (mandatory);

2. Implementing one or several of the connector interfaces extending the

IExtensionDescriptor interface (see Table 2 for details on available connector interfaces

and example plug-in implementations);

3. Implementing the actual plug-in code by implementing DRAMS interfaces according to the

interface classes implemented in step 2;

4. Creating a .jar archive containing the plug-in binaries;

5. Copying the *.jar file to the "plug-in" subfolder of the DRAMS installation directory

(alternatively, the "plugin" subfolder of a model project); the PluginManager automatically

detects, loads and registers the plug-in.

Figure 16: Important interfaces and class for plugin development.

https://svn.uni-koblenz.de/ocopomo/wp5/implementation/branches/DRAMS-platforms/
https://svn.uni-koblenz.de/ocopomo/wp5/implementation/branches/DRAMS-platforms/
https://svn.uni-koblenz.de/ocopomo/wp5/implementation/branches/DRAMS-plugins/
https://svn.uni-koblenz.de/ocopomo/wp5/implementation/branches/DRAMS-plugins/

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 21 of 35

Table 2: Plug-in connector interfaces.

Connector interface Description Example Plugins

IResultWriterExtensionConnector connector for implementing

general result writer
functionality; one class of

the plugin code must

override the

AbstractResultWriter class

ConsoleWriterPlugin

DRAMSModelExplorerPlugin
MultiTabConsoleWriterPlugin

IStreamResultWriterExtensionConnector connector for implementing
stream-based (e.g. for file

writing) result writer

functionality;

one class of the plugin code

must override the

AbstractStreamResultWriter

class

CSVWriterPlugin
NumericalXMLWriterPlugin

TextWriterPlugin

IUIExtensionConnector connector for providing

general UI components, not
tailored to a specific Java

GUI library

(connector not fully

implemented yet)

ISwingUIExtensionConnector connector for providing UI
components implemented

with the Swing library; one

class of the plugin code

must provide an extension

of the JFrame class

ConsoleWriterPlugin
DRAMSConsolePlugin

DRAMSModelExplorerPlugin

DRAMSSwingGUIPlugin

MultiTabConsoleWriterPlugin

IClauseExtensionConnector connector for adding new

clause (with related clause

parsers) to DRAMS
(connector not fully

implemented yet)

IParserExtensionConnector connector for providing a
parser suite for the DRAMS

core functionality

(connector not fully

implemented yet)

3.3. ADDING CLAUSE OPERATORS

The procedure for adding new operators to existing clauses of the DRAMS core comprises the

following steps:

1. Selecting the optimal clause class to add the functionality; if not dedicated to a concrete

category (e.g. list operators), then often OperatorClause (for pure LHS clauses) or

JavaActionClause (for combined LHS and RHS clauses) are appropriate;

2. Add a new keyword for the operation to the Operators enumeration;

3. Implement the associated code in the evaluate() method;

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 22 of 35

4. Modify the related parser class by adding:

 the related keyword in the declarative code to the token definition "RESERVED WORDS

AND LITERALS";

 the parser definition in the _compile() method.

3.4. ADDING CLAUSES

The procedure for adding new clause to the DRAMS core comprises the following steps:

1. Implement AbstractClause class (see above in Figure 15);

2. Implement JavaCC parser definition, using ClauseParser as base class (Figure 17);

3. Add the parser class (generated by JavaCC) and the new clause class to ClauseFactory

(PARSERS and CLAUSE_CLASSES data structures, respectively).

Figure 17: Important classes for parser extension.

3.5. ADAPTION TO SIMULATION TOOLS

The procedure for adapting DRAMS to simulation tools (other than RepastJ 3.1) comprises the

following steps:

1. Implement the IModel interface (Figure 18), by providing code for the interface methods, and

additionally for:

 initialising the agent instances for the simulation model;

 establishing a link to the RuleEngineManager;

 creating a rule schedule (RuleEngineManager method getSchedule());

 initialising the DRAMS UIManager and (optionally) creating DDG and RDG

visualisations from data provided by the RuleEngineManager;

 establishing the link from the RuleSchedule to the UIManager;

2. Extend the Agent class and implement the abstract methods (if needed, otherwise leave empty

methods).

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 23 of 35

Figure 18: Important interfaces and class for adapting DRAMS to simulation tools.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 24 of 35

REFERENCES

Lotzmann, U., and Meyer, R.: D4.2-C: User Manual on Policy Modelling and Simulation Tools.
DRAMS User Manual. Annex to Deliverable 4.2, OCOPOMO consortium, 2013.

Moss, S., Meyer, R., Lotzmann, U., Kacprzyk, M., Roszczynska, M., and Pizzo, C.: D5.1 Scenario,

Policy Model and Rule-based Agent Design. Deliverable 5.1, OCOPOMO consortium, 2011.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 25 of 35

ANNEX - VERSION HISTORY

2013-04-03 clauses listCreate and setCreate now accept a single argument (content of the
newly created list/set)

 more informative error message (including expressions code, rule, variable
assignments) for problems occurring during evaluation of math expressions

2013-03-26 two new RHS/LHS clauses available:

O (create <agent_type> <agent_name>) - <agent_type> is the class
name (string) of the agent to create, <agent_name> the name (string)
of the instance

O (kill <agent_type> <agent_name>) - parameters have same meaning
as for (create ...)

 bugfix: reported ConcurrentModificationException shouldn't appear anymore

2013-02-06 This version brings a new LHS/RHS clause (halt) for debugging purposes, which
allows to pause a simulation run from within a rule. Below is a small example rule.

(defrule global::halting

 (global::$TIME$ (value 42.0))

 (halt)

=>

 (print "----------------> stop simulation now")

)

2013-01-18 DRAMS UI now remembers the setting of the factbase update checkbox
(enables/disables auto-update of factbase display every time step) from the last session.
In the previous version auto update was always enabled, which occasionally caused

heap space errors with memory consuming models.

2012-10-24 new plugin interface for DRAMS

 GUI removed from DRAMS core, now available as plugins

 output writers removed from DRAMS core, now available as plugins

 valid output writer keywords are:

O "default": Repast console (if using this options together with any
other output writer, there might be duplicate entries at these
writers)

O "console": output console with separate windows for each
deflog/defoutput

O "tab-console": output console within a single window (and a tab for
each deflog/defoutput)

O "csv": csv file writer

O "graph-xml": xml files for Google visualisations (with modified
schemaLocation)

O "text": plain text file writer

O "explorer": model explorer (still experimental code!)

 multiple constraints for output writer definitions, in order to redirect messages

within a range of priorities to a console, e.g. (deflog console prio <=> 0 30
"debug 1"); "<=>" stands for [min, max], also possible is "<>" -->]min, max[

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 26 of 35

 bugfix: insertfacts with specified time stamp are asserted at the correct time

 processing of trace information by DRAMS, which implied changes in the
model class constructor (additional parameter: instance UUID)

 bugfix: "not" can be used with any clause

 optional variable assignment for accumulator, list operator, set operator and
query clauses

 "empty" rules don't cause parser errors anymore

2012-08-01 execution speed enhanced

 the scheduler bug discussed last week should be fixed: if one of the
retrieve/query clauses in an OR-composite could not be unified due to
missing facts, the rule was not scheduled, although the LHS would have been
successfully evaluated

 added functionlity in retrieve clause (requested by Scott): bind any unbound
slot variable additionally to assigning a result fact variable (not tested yet!)

 GUI: if the "factbase update" checkbox is activated, the fact base view in the
DRAMS console is updated 500 ms after the last modification (this saves a lot
of computation time...)

 trace functionality (this is still under development/testing; I will send a

separate notification soon)

2012-07-25 bugfix for search function

 bugfix in scheduling algorithm: fact retrieved in OR or XOR composits are
triggering the rule evaluation even though not all facts are present

2012-07-22 retract clause accepts variable bound to fact

 code cleanup for fact base operations: old query code (which was still used
for Java fact base queries) has been adapted to new implementation

 bugfix: fact assertion timeStamp for rules executed from the console was
initialised incorrectly (-2.0)

2012-07-18 Several bugfixes related to reading fact base operations where the source fact
base is specified by one or two variables. Such facts still cannot be used to
trigger rules, because at the time the schedule is created the actual fact base
is unknown. For these facts, special nodes are shown in the DDG in yellow
colour.

Example:
(global::$AGENT$ (agent ?a))

...

(?a::factToRetrieve (...))

Hence, if a fact in a remote fact base should trigger the rule processing, then
the agent type of the source fact base in combination with
...ruleengine_instance slot value _must_ be specified.

Example:
(global::$AGENT$ (ruleengine_instance ?ri))

...

(AgentType@?ri::factToRetrieve (...))

 Fact base selection in query clauses has been adopted to the method applied
by retrieve clause.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 27 of 35

 Text search function for most UI text areas (Ctrl-F opens search dialog,
current selection is taken as default search phrase; F3 switches to next
occurrance of search phrase)

2012-07-16 added "not equal" (!=) compare operator clause

 parser error messages are redirected to the DRAMS console window

 rule output (by print clauses) is redirected to the DRAMS console window

2012-07-11 A new clause "components" is available which returns a list of components
for the specified deftype. I hope this will make the usage of deftypes in rules
more expressive.

 The problem with the exception reported by Suvad has been solved. Reason
was a bug in JGraphX, which caused the exception under certain conditions
(large graph, JDK7). An appropriate workaround for this issue has been added
to the Model super class.

2012-05-08 new clause: gensym (OperatorClaue.java; ClauseParser_Operator.jj)

 new clause: genuuid (OperatorClaue.java; ClauseParser_Operator.jj)

 change: behaviour of CompositeClause (or, and, xor) changed: the scope of
assigned variables is now the entire rule (CompositeClause.java;
Parser_Rule.jj)

 new: "(exists(and/or/xor" for the old behaviour of CompositeClause
(restricted scope of assigned variables)

2012-01-19 Remark: sorted by modified Java classes

FactDescriptor:

 to do: owner id instead of UUID as reference for agent instance

Configuration:

 comment (line 158) slightly extended

IRuleProcessingFacility:

 new method "executeDeclarativeCode" for executing DRAMS rules on the fly

 methods executeLHS and executeRHS removed

ParameterSet:

 extensive changes and extensions for storing the LHS evaluation tree (mainly
information whether the parameter set has been successfully evaluated)

RuleEngine:

 changes in IRuleProcessingFacility implemented

RuleEngineManager:

 changes in IRuleProcessingFacility implemented

RuleGroupAND/OR/XOR:

 small modification due to change in Rule.java

ActionRuleFire:

 added code for profiling rule runtimes

MainWindow:

 added new console window (for executing declarative code on the fly)

 new GUI class ConsoleWindow

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 28 of 35

ClauseFactory:

 more differentiated error output for exceptions during clause instantiation

ClauseParser_Exists.jj:

 bugfix: for instance specification now also an indentifier (without quotes
around) is allowed

ClauseParser_Operator.jj:

 declarative syntax for new operator FOREACH (keyword "each") added

ClauseParser_Retrieve.jj:

 bugfix: for instance specification now also an indentifier (without quotes
around) is allowed

Parser_Rule.jj:

 handing over owner rule to inner clauses

 " " no longer allowed within identifiers

Parser_RuleEngine.jj:

 new construct "execrule" for rule execution on the fly (together with related
implementations)

 added support for UUIDs in DRAMS code

AbstractClause:

 method "setRule" set to protected

ActionClauseAssert:

 debug output in line 120; to be removed

CompositeClause:

 modification due to changed LHSComponent

 implementation of setRule()

JavaActionClause:

 if no result variable specified, the method result can be used as clause
evaluation result, if type is boolean

NotClause:

 implementation of setRule()

OperatorClause:

 new operator FOREACH

LHSComponent:

 extensive changes and extensions for storing the LHS evaluation tree

 changes in RuleComponent implemented

----> reverted to revision 245

RHSComponent:

 changes in RuleComponent implemented

Rule:

 changes in RuleComponent regarded

 new method for retrieving the evaluationResultParamLists

RuleComponent:

 "task" now additional parameter for process

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 29 of 35

 new field "ownerRule", plus new constructor, getter and setter for this field

ParserUtilities:

 generation of UUID objects from DRAMS code

2011-11-01 syntax error (type and instance specification mixed up) in insertfact and
insertfacts fixed

 syntax change: deferred by becomes deferredBy

 several small bugfixes

2011-10-17 cleaned-up project data: contents from .metadata, .settings and bin no longer
versioned

 syntax change for list_operator parser: list create becomes
listCreate, list remove becomes listRemove

 syntax change for set_operator parser: set create becomes setCreate,
set remove becomes setRemove

 several small bugfixes

2011-08-07 new fact assertion strategy: two facts are regarded as different if they differ
in the timestamp slot (CAUTION: might cause problems with older models!)

 error message is printed to log if an assert/retract clause tries to
assert/retract a fact while one or more slot variables are unbound

 additional information in DDG visualisation: dependencies from within a
composite clause are marked accordingly

 reorganised priority levels of log messages (error and warn: as before; info:
additional information about current time step/task; debug: all other
messages)

 parser bugfix: fact names in retrieve clauses starting with reserved words no
longer cause parser errors

2011-06-14 rule scheduler improvement: now facts are regarded for scheduling that were
inserted to a fact base previously to the current tick (with this modification,
e.g. facts asserted with time stamp -1.0 will trigger rule evaluation at time
0.0, if retrieve clause has lag mode last).

 improved error messages for several clause classes

2011-06-06 (1) The rule scheduler has been revised:

 Not-clauses are treated correctly, PseudoFact is no longer needed and has
been removed

 All lag modes are now treated by rule scheduler, see below the release
version from 2010-08-14.

 Additionally to asserted facts, retracted facts are regarded as well.

Please note: Most of the workarounds (mainly in respect of forcing rules to fire at
defined time steps) are no longer necessary and might even result in unexpected
behaviour. Deviating rule scheduling might also occur due to certain model “bugs”
(which did not cause any problems with the old scheduler).

(2) Similar to the global fact base, a global rule engine has been added (only roughly
tested).

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 30 of 35

(3) Enumeration data types can be specified for fact templates. Fact verification
(method FactBaseEntry.verifyFact()) and error messages have been adapted
accordingly, slot data type is now represented by class DataTypeManager (and inner
class CostomDataType).
Declarative syntax:
(deftype typeName [member-1, member-2, member-3, ..., member-n])

Example for deftemplate:
(deftemplate factname (slot:typeName) ...)

(4) Several additions and changes in declarative code syntax:

 Strings can be written without quotes, if containing only characters allowed
for Java identifiers or one of the following special characters : # + - ~ | § & * /
^ % $

 New (additional) keywords for three lag modes:

o relAt lag

o relBefore lagBefore

o relAfter lagAfter

 Data types from java.lang.* and java.util.* are now supported for
slot data types.

(5) System-wide declarative code can now be added to the RuleEngineManager at
any time using the method addDeclarativeCode(). This allows to use more than
one configuration files. Additional code is applied to all existing rule engines, and all
newly created rule engines are equipped with all code fragments defined so far.

(6) Several GUI changes:

 Addition: image files of dependency graphs can be saved (menu FileSave
image).

 Addition: new text pane for warning and error messages (configurable via
menu ViewLog warnings/Log errors).

 Addition: formatted and/or coloured output of logs.

 Bugfix: RDG is drawn correctly again.

 Bugfix: rule schedule log information improved (mainly regarding “reason for
scheduling”).

(7) Modification in RepastJ model class (DRAMS Examples): separate DDGs are
presented for all agent types.

(8) Parser bugfix: if a rule specification contained more than one math expressions,
then the rule was not instantiated correctly.

2011-04-19 (1) Modular parser has been completed. A detailed description will be available as
soon as syntax has been approved by modellers; for the moment, please refer to the
code example.

The modular concept of the parser allows for several types of use, which can also be
applied in combination:

 The rule engine manager can be equipped with an initial configuration. This
should be done as first action (prior to creating any rule engine instance), and
cannot be extended or changed later (this might be possible in later versions).

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 31 of 35

 Declarative model parts can be added directly to rule engine instances using

the public void addExpression(String expression) method. The

method can be invoked repeatedly, and the expressions may contain arbitrary

numbers of fact template, fact and rule definitions.

 Clauses can be added to existing rules (as already used in previous DRAMS
versions; now available for all clause types).

(2) An experimental “code generator” has been implemented, which retrieves the
declarative code of the model currently loaded into DRAMS, whereas it doesn’t
matter whether the model was specified by declarative code or class instantiations. In
this context, the following methods are of particular interest:

 RuleEngineManager:
public String getDeclarativeCode(boolean factTemplates,

boolean facts, boolean rules)

This method returns code for the selected element types of the entire model.
E.g., the complete model code can be obtained by:
String code =

RuleEngineManager.getInstance().getDeclarativeCode(true,

true, true);

 RuleEngine:
public String getDeclarativeCode(boolean factTemplates,

boolean facts, boolean rules)

This method returns code for the selected element types of the rule engine
object.

 RuleBase:
public String getDeclarativeCode()

 FactBase:
public String getDeclarativeCode_FactTemplates()

public String getDeclarativeCode_Facts()

(3) RuleEngine asserts a permanent fact $SELF$ with information about the
agent/rule engine instance to the local fact base during initialisation. The fact
contains equal slots as the $AGENT$ facts stored in global fact base. It can be used
e.g. to retrieve the name of the agent this rule engine belongs to.

(4) Restricted query functionality added to RetrieveClause (result assignment to a
free variable).

2011-04-16 Fact.java

 Constructors: moved setting of „internal“ parameters to begin of constructors
 now are overwritten by content

 New method getExpression(); TODO: rename for all occurrances...

FactBase.java

 New method getFactTemplatesExpression()

 New method getFactsExpression()

FactBaseEntry.java

 TODO: Check conditions for “permanent” (method
checkExtendedTimeConditions())

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 32 of 35

 New method getExpression()

IFact.java

 New method definition getExpression();

Configuration.java

 Modified/new methods getExpression(...)

IRuleProcessingFacility.java

 New method definition addExpression()

 New method definition getOwnerType()

RuleEngine.java

 Type of field “owner” changed to IAgent

 New string field ownerName

 RuleEngine writes a fact $SELF$ with information about the agent/rule engine
instance into the local fact base during initialisation (constructor)

 New method addExpression(): starts the rule engine parser with the specified
configuration string (creates fact templates, facts and rules according to
the configuration)

 Method getOwnerName() renamed to getOwnerType()

 New method getOwnerName() (now returning the name and no longer the
type!)

 New method getExpression()

RuleEngineManager.java

 New string field “configuration”; TODO: allow to change/extend configuration

 New method setConfiguration()

 Method getOwnerName() renamed to getOwnerType()

 Method addRuleEngine modified (among others, hands over of configuration
to rule engine...)

 New method getOwnerName()

 New method addExpression() (configuration data for global fact and rule
bases)

 New method getExpression()

ClauseParser.java

 New abstract method getTokenImages() (used by ClauseFactory)

ClauseParser_Accumulator.jj

 Completed

ClauseParser_JavaAction.jj

 Completed

ClauseParser_Operator.jj

 Completed

ClauseParser_Retrieve.jj

 Completed

ClauseParser_Assert.jj

 Completed

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 33 of 35

ClauseParser_Retract.jj

 Completed

Parser_StringAnalyzer.jj

 Completed, TODO: to be optimised

AbstractClause.java

 New abstract method getExpression()

LHSComponent.java

 New field “evalMode” (the evaluation mode now is set for the LHS clause and
no longer parameter of the process method)

 New method getEvalMode()

 New method setEvalMode()

 New method getExpression()

RHSClause.java

 New method getExpression()

Rule.java

 Additional constructor (without parameters)

 New method setExpression()

 New method getExpression()

RuleBase.java

 New method getExpression()

AccumulatorClause.java

 Expression constructor implemented

 Slot names in method evaluate() now are specified by constants in
Declarations.java

 New method getExpression()

ActionClauseAssert.java

 New method getExpression()

ActionClauseRetract.java

 New method getExpression()

CmpositeClause.java

 Field evalMode removed (the evaluation mode now is stored within the
LHSComponent)

 Constructor adapted

 Expression constructor removed (there is no separate parser for this clause,
the clause instances are generated by Parser_Rule)

 New method getExpression()

ExistsClause.java

 New method getExpression()

FctActionClause.java

 New method getExpression()

JavaActionClause.java

 New method getExpression()

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 34 of 35

ListOperatorClause.java

 Expression constructor implemented

 New method getExpression()

NotClause.java

 Expression constructor removed (there is no separate parser for this clause,
the clause instances are generated by Parser_Rule)

 New method getExpression()

OperatorClause.java

 New method getExpression()

QueryClause.java

 Lag mechanism adopted to implementation of RetrieveClause (field
lagLastTick removed, modification of updateLagMode() and evaluate())

 Expression constructor added

 New method getExpression()

RetrieveClause.java

 Modification of evaluate() in order to implement a (restricted) query
functionality (result assignment to a specified variable)

 New/modified method getExpression()

SetOperator.java

 Expression constructor added

 New method getExpression()

Declarations.java

 Changed to interface

 Several additions and modifications

Utilities.java

 New static method addQuote()

 New static method conditionalAddQuote()

 New static method getIndent()

2010-08-14 New data-driven rule scheduler, relying on the data dependency graph

 New clause types

O “query clause”

O “accumulator clause”

 GUI: widget displaying the current rule schedule

 Improvements of deferred fact base operations

 Introduction of shadow facts

 Revision of the clause result evaluation mechanism

 Improvement of dependency graphs (internal and GUI)

 Several bugfixes

2010-08-03 Logging facility

 Several bugfixes

2010-07-29 Duplicate fact base entries: only one instance of facts with equal slot values is
allowed; facts with equal content (slots), but different owner or time step

D4.2 SYSTEM AND USER DOCUMENTATION

SD-3: SYSTEM DOCUMENTATION

OF DRAMS TOOLS

v.1.00

28/04/2013

 Page 35 of 35

information are treated as different facts

 Introduction of fact templates for fact base

 Add retract fact method to fact base

 Introduction of deferred fact base operations

 Operations / new clause types

O New functionality in “operator” clause (all comparative operators,
bind)

O “retract” clause; generalisation “fact action” clause for “retract” and
“assert”

O “list operator” clause

O “Java action” clause

O Mathematical expressions in clauses (based on “MathEval” library)

2010-07-18 Distribution of rule and fact bases among agents

 Distributed dependency graphs, i.e. the graphs incorporate individual fact and
rule bases of agents (or, more precise, agent types) and the (newly available)
global fact base; this functionality is implemented within a global rule engine
manager (singleton class RuleEngineManager)

 Rule schedule provided by the rule engine manager which can be used to
determine the rules to fire at a specified point of time (class RuleSchedule)

 Access to remote fact bases from rule clauses, i.e. the global fact base and
fact bases of other agent instances

 Agent instances can be accessed via dedicated facts, stored in the global fact
base

 DRAMS as separate Eclipse project

2010-06-14 Implementation of rule evaluation code; replacement for provisional code

 “Assert” and “not” clauses

 First versions of data and rule dependency graphs

 First version of prototype GUI

2010-05-14 Fact base with query functionality

 Rule base and rules

 “Retrieve” and “operator” (less_than) clauses

2010-05-10 Start of development

