

OCOPOMO

Open Collaboration in Policy
Modelling

D 4 . 2 S Y S T E M A N D U S E R

D O C U M E N T A T I O N

S D - 2 : S Y S T E M D O C U M E N T A T I O N
O F C C D T O O L A N D A N N O T A T I O N

E X T E N S I O N S

Document Full Name OCOPOMO_D4.2-SD2_CCDTools-SysDoc.doc

Date 28/04/2013

Work Package WP4: Integration of components

Lead Partner Intersoft

Authors
Sabrina Scherer, Björn Lilge, Peter Bednar, Peter
Smatana

Document status v1.00 FINAL

Dissemination level PUBLIC (PU)

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 2 of 27

TABLE OF CONTENTS

1. INTRODUCTION AND BACKGROUND TECHNOLOGIES .. 3

1.1. ECLIPSE PLUG-INS .. 3
1.2. ECLIPSE MODELLING FRAMEWORK (EMF) AND ECLIPSE GRAPHICAL MODELLING FRAMEWORK (GMF) ... 3
1.3. ACCELEO .. 4
1.4. GATE ... 4
1.5. JPEDAL ... 4
1.6. OPENCMIS ... 5
1.7. REST .. 5

2. CCD TOOL AND CCD2DRAMS TOOL ... 6

2.1. ARCHITECTUREOVERVIEW ... 6
2.2. SETUP OF DEVELOPMENT ENVIRONMENT AND DEVELOPMENT CYCLE ... 7
2.3. CCD TOOL - CREATION OF AN EMBEDDED ANNOTATION EDITOR ... 7
2.4. CCD META-MODEL AND ANNOTATION META-MODEL ... 8

2.4.1. Changing the CCD Meta-Model .. 10

2.4.2. Replacing the CCD Meta-Model with another Meta-Model.. 10

2.4.3. Translate a CCD Model ... 11
2.5. CCD-TO-DRAMS TRANSFORMATION DEFINITION .. 11

3. CCD ANNOTATION EXTENSIONS AND CONTENT REPOSITORY CLIENT 19

3.1. ARCHITECTURE OVERVIEW .. 19
3.2. SETUP OF DEVELOPMENT ENVIRONMENT AND DEVELOPMENT CYCLE ... 20
3.3. CCD ANNOTATION EXTENSIONS - INTERFACE DESCRIPTION ... 20

3.3.1. PDF Annotator ... 21

3.3.2. HTML Annotator ... 21

3.3.3. MyNote Annotator ... 21

3.3.4. CCD Editor Extension.. 22
3.4. CONTENT REPOSITORY CLIENT .. 22

4. SIMULATION ANALYSIS TOOL ... 24

4.1. ARCHITECTURE OVERVIEW .. 24
4.2. SETUP OF DEVELOPMENT ENVIRONMENT AND DEVELOPMENT CYCLE ... 24
4.3. SIMULATION ANALYSIS TOOL - PLUG-IN DESCRIPTION .. 24

4.3.1. Model Narrative Editor .. 25

4.3.2. Log View .. 26
4.4. TRACEABILITY EXPLANATION .. 26

REFERENCES .. 27

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 3 of 27

1. INTRODUCTION AND BACKGROUND TECHNOLOGIES

This document provides the implementation and technology details of OCOPOMO plug-ins for the

Eclipse platform, namely the CCD Tool, Annotation Extensions on CCD model development, Content

Repository Client, CCD2DRAMS transformation tool, and Simulation Analysis Tool.

Installation instructions and usage guidelines for these tools are provided in the main text of D4.2

deliverable (section 3.2), as well as in the accompanying documents D4.2.-B D4.2-B: User Manual on

CCD Tools (Scherer et al, 2013) and D4.2-D: User Manual on Tools for Simulation Analysis and

Output Scenario Generation (Smatana and Furdik, 2013).

The main implementation technologies for developing the CCD Tool and the CCD2DRAMS Tool of

the OCOPOMO toolbox are Eclipse plug-in, Eclipse Modelling Framework (EMF,

http://www.eclipse.org/modeling/emf/) and Graphical Modelling Framework (GMF,

http://www.eclipse.org/modeling/gmp/). For the CCD2DRAMS tool the main technology is Acceleo

(http://www.eclipse.org/acceleo/). The OCOPOMO CCD Annotation Extension toolkit is based on

implementation technologies such as GATE (http://gate.ac.uk/), JPedal

(http://sourceforge.net/projects/jpedal/), OpenCMIS (http://chemistry.apache.org/java/opencmis.html)

and REST (https://en.wikipedia.org/wiki/Representational_state_transfer). These technologies are

detailed in the following subsections.

1.1. ECLIPSE PLUG-INS

The Eclipse platform has been designed to provide an Integrated Development Environment (IDE).

The platform does not provide many features “by design” (Eclipse Platform Plug-in Developer Guide,

2005, p. 2). It encourages the “rapid development of integrated features based on a plug-in model” and

“provides a common user interface (UI). Eclipse runs on different operation systems (OS). Plug-ins

can be programmed for Eclipse independently from the underlying OS.

The Eclipse platform has an “open architecture” using “the model of a common workbench”. Plug-ins

can be integrated into this workbench using “well defined extension points” (Eclipse Platform Plug-in

Developer Guide, 2005). More information are available on http://www.eclipse.org.

1.2. ECLIPSE MODELLING FRAMEWORK (EMF) AND ECLIPSE GRAPHICAL
MODELLING FRAMEWORK (GMF)

EMF relates modelling concepts directly to their implementations. It is a framework and code

generation facility that allows it to define a model in java interfaces, UML or XML schema and

generate the others. EMF is described as that is in between the "I don't need modelling" and the

"Modelling rules" crowds (Steinberg, 2009).

The model used to represent models in EMF is called Ecore. The Ecore is itself an EMF model, and

thus is it can be seen as its own meta-model (Steinberg, 2009). The following can be summarized:

1. Ecore and its XMI serialization is the centre of the EMF world.

2. An Ecore model can be created from any of at least three sources: a UML model, an XML

Schema, or annotated Java interfaces.

3. Java implementation code and, optionally, other forms of the model can be generated from an

Ecore model.

Other forms of models (in the book they take the example of an RDB schema) are possible to generate

the Ecore Model (Steinberg, 2009). The CCD meta-model, presented in more details in (Scherer et al,

2013), is an Ecore model. The EMF Framework has been used in order to create the editors for a CCD.

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/acceleo/
http://gate.ac.uk/
http://sourceforge.net/projects/jpedal/
http://chemistry.apache.org/java/opencmis.html
https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.eclipse.org/

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 4 of 27

The Eclipse Graphical Modelling Framework aims to provide a bridge between the Eclipse Modeling

Framework and the Graphical Editing Framework (see at http://www.eclipse.org/gef/). EMF is a

framework that provides technology to create rich graphical editors and views. GMF has been used in

order to create the diagram editors.

1.3. ACCELEO

Acceleo (http://www.eclipse.org/acceleo/) is an Eclipse implementation of the "MOF Model-to-Text

Language (MTL) standard, which is maintained by the Object Management Group (OMG,

http://www.omg.org).

Transformation projects are created in Acceleo as Eclipse plug-ins. Based on the templates and the

local specification of meta-models, an Eclipse plug-in framework is automatically generated. With an

"Acceleo Launcher UI Project” the transformation can be integrated into the Eclipse user interface in a

form of Eclipse plug-ins.

1.4. GATE

GATE, i.e. the General Architecture for Text Engineering (http://gate.ac.uk), is an infrastructure for

developing and deploying software components that process human language (Cunningham et al,

2011). When a document is loaded into GATE, its format is analysed and converted into a GATE

document, which consists of a content and one or more layers of annotation. The annotation format,

internally represented as a modified form of the TIPSTER format (Grishman, 1997), is largely

isomorphic with the Atlas format (Bird and Liberman, 1999) and successfully supports I/O to/from

XCES and TEI (Ide, Bonhomme, and Romary, 2000). An annotation has a type, a pair of nodes

pointing to positions inside the document content, and a set of attribute-values, encoding further

linguistic information. Attributes are strings; values can be any Java object. An annotation layer is

organised as a Directed Acyclic Graph on which the nodes are particular locations in the document

content and the arcs are made out of annotations. The annotation mark-up included in the text is

automatically extracted into a special annotation layer and can be used for processing or for exporting

the document back to its original format.

GATE infrastructure is a rich platform for human language processing; in the OCOPOMO toolkit we

are using only its part that is related to annotation management.

1.5. JPEDAL

As an Open Source library, JPedal is provided for free with source code by IDR solutions

(http://www.idrsolutions.com).

Key features of JPedal are as follows:

1. Fully-featured PDF viewer with embedded font support, zooming, JBIG2 support,

advanced PDF search, bookmarks, thumbnails, Layers support and more…

2. Released under the open source LGPL license with full source code for use in both

commercial and Open Source projects.

3. In development for over 10 years and used in corporate software globally.

4. Upgrade route to full commercial version if additional features or support needed.

5. PDF to image converter example included ConvertPagesToImages.java.

6. Plug-ins for Eclipse, NetBeans, and IDEA.

http://wiki.eclipse.org/EMF
http://wiki.eclipse.org/EMF
http://wiki.eclipse.org/GEF
http://www.eclipse.org/gef/
http://www.eclipse.org/acceleo/
http://www.omg.org/
http://gate.ac.uk/
http://www.idrsolutions.com/

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 5 of 27

1.6. OPENCMIS

Apache Chemistry OpenCMIS (http://chemistry.apache.org/java/opencmis.html) is a collection of

Java libraries, frameworks and tools around the CMIS specification.

The goal of OpenCMIS is to make CMIS simple for Java client and server developers. It hides the

binding details and provides APIs and SPIs on different abstraction levels. It also includes test tools

for content repository developers and client application developers.

1.7. REST

Representational State Transfer (REST) is a style of software architecture for distributed systems such

as the World Wide Web. REST has emerged as a predominant web API design model.

The term representational state transfer was introduced and defined in 2000 by Roy Fielding in his

doctoral dissertation (Fielding, 2000). Fielding is one of the principal authors of the Hypertext

Transfer Protocol (HTTP) specification versions 1.0 and 1.1.

The remainder of the document is organised as follows. In Chapter 2, implementation details on CCD

Tool and CCD2DRAMS transformation tool are presented. The modular architecture of tools, which is

extendible through further plug-ins, is shortly described. The main point of the plug-ins is the CCD

Meta-model which extends the Annotation meta model. The description of both follows in section 2.4.

The transformation definition of the CCD2DRAMS Tool that describes how a CCD is transformed

into DRAMS code is presented in section 2.5.

CCDTool_JavaDoc.zip - see the accompanying zip package that contains the

documented source code in JavaDoc for the CCD Tool.

The CCD Annotation Extensions in terms of PDF, HTML, and editable text annotations are detailed in

Chapter 3. The modular plug-in architecture and interfaces of the implemented components are

presented. The Content Repository Client plug-in, which enables a connection of local Eclipse

environment with remote Alfresco web space, is described in section 3.4.

CCDToolsExtensions_JavaDoc.zip - see the accompanying zip package that contains

the documented source code in JavaDoc for the Content Repository Client component

and for the Annotation Extensions of the CCD Tools suite.

Chapter 4 presents a system documentation of the Simulation Analysis Tool, which enables a

construction of output model-based scenarios on a basis of results obtained from running simulations.

The Eclipse plug-in architecture is described together with interfaces of inner system components

provided within the tool. Finally, a simplified sequence diagram describing the traceability

mechanism, which is enabled by the Simulation Analysis Tool, is briefly explained in section 4.4.

SimulationAnalysisTool_JavaDoc.zip - see the accompanying zip package that

contains the documented source code in JavaDoc for the Simulation Analysis Tool and

related utilities.

http://chemistry.apache.org/java/opencmis.html

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 6 of 27

2. CCD TOOL AND CCD2DRAMS TOOL

2.1. ARCHITECTUREOVERVIEW

The scheme depicted in Figure 1 presents the main Eclipse plug-ins of the CCD Tool and the

CCD2DRAMS Tool.

Eclipse Platform

CCD Annotation Editor Plugin
org.ocopomo.ccd.annotation.presentation

CCD2DRAMS Plugin
org.ocopomo.ccd2drams.ui

CCD Actor Network Diagram Plugin
org.ocopomo.ccd.diagram

CCD Actions Diagram Plugin
org.ocopomo.ccd.diagram.actions

CCD Actions Diagram Plugin
org.ocopomo.ccd.diagram.instances

CCD Editor Plugin
org.ocopomo.ccd.model.presentation

Figure 1: Overview of CCD and CCD 2 DRAMS Tools plug-ins.

Following, the main plug-ins are shortly described.

 CCD Editor Plug-in (org.ocopomo.ccd.model.presentation): Plug-in that provides

user interface that allows editing of models (see Figure 2) that are using the CCD Meta-model.

Figure 2: CCD Editor.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 7 of 27

 CCD Annotation Editor Plug-in (org.ocopomo.ccd.annoation.presentation): Plug-in

that provides user interface that allows annotation and editing of models that are using the

CCD Meta-model. The Annotation Editor Plug-in

(org.ocopomo.ccd.annoation.presentation) supports the annotation of txt files and

can be extended with further plug-ins to support other file types (see section 3). It uses the

CCD Editor Plug-in interfaces and classes.

 The three plug-ins to present and edit diagrams are org.ocopomo.ccd.diagram for actor

network diagrams, org.ocopomo.ccd.diagram.actions for actions diagrams and

org.ocopomo.ccd.instances for instance diagrams.

 CCD2DRAMS Plug-in (org.ocopomo.ccd2drams.ui): The plug-in provides the user

interface to run the CCD2DRAMS transformation.

2.2. SETUP OF DEVELOPMENT ENVIRONMENT AND DEVELOPMENT CYCLE

To start developing new components or to customize CCD Tool components, the developer should

install an Eclipse Indigo version. The developer should further install Plug-in Development tools,

EMF SDK, GMF SDK and Acceleo SDKI from the Eclipse Project update sites. It is further necessary

to include the CCD and CCD2DRAMS packages into the workspace.

2.3. CCD TOOL - CREATION OF AN EMBEDDED ANNOTATION EDITOR

The manual of the CCD Tool (Scherer et al, 2013) gives an overview of the functionalities and

features implemented. This section describes how the CCD Annotation Editor can be extended for

other file types than txt. Further the role of the CCD Meta-model is described and how it can be

changed or adapted.

In order to create a new annotation editor (called marking component) for another type of files in the

CCD annotation editor (class AnnotationEditor), it is necessary to implement a respective Eclipse

plug-in. The plug-in should have an Activator class. The marking component should implement the

IMarkingEditorComponent interface in the org.ocopomo.annotation.presentation

package. Figure 3 shows the interfaces and classes that are contained in the

org.ocopomo.annotation.presentation package.

In addition, the IMarkingEditorComponent2 interface can be implemented. This interface has an

additional method for better performance of annotation editor loading.

If a class implements the IMarkingEditorComponent interface, data needs to be further configured

in the plugin.xml file. Therefore the org.ocopomo.annotation.presentation.

MarkingEditorComponents extension point needs to be used. The following code fragment shows

as an example the implemented marking editor component for TXT files.

The class attribute should have the name of the new implemented CCD Annotation Editor Marking

Component.

<extension

point="org.ocopomo.annotation.presentation.MarkingEditorComponents">

<markingEditorComponent

class="org.ocopomo.annotation.presentation.MarkingEditor"

fileNameExtension="txt">

</markingEditorComponent>

</extension>

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 8 of 27

The component appears as a new tab in the CCD Annotation Editor if a file of the respective type is

loaded.

 ::org.ocopomo.annotation.presentation

Figure 3: Interfaces and classes in org.ocopomo.annotation.presentation package.

2.4. CCD META-MODEL AND ANNOTATION META-MODEL

The CCD Meta-model is detailed in (Scherer et al, 2013). In order to make the Annotation components

independent of the CCD Tool, the annotation meta-model is constructed as an own separate meta-

model.

The structure of the annotation meta-model is depicted in Figure 4. Each CCD entity is of type

“AnnotatedObject”. This way the implementation of the annotation components is independent of the

particular CCD meta-model. It is just necessary to change some xml config files in order to allow

the annotation of another Ecore meta-model.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 9 of 27

Figure 4: The annotation meta-model.

Figure 5 shows the elements of the CCD and Annotation Ecore model and their inheritance.

Figure 5: Elements of the CCD Ecore model and the Annotation Ecore model.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 10 of 27

2.4.1. Changing the CCD Meta-Model

Changes of the CCD meta-model are to be made in the file ccdmodel.ecore in the project with

name “org.ocopomo.emf”. The following steps need to be proceeded:

1. Change the model.

2. Reload the genmodel: ccdmodel.genmodel (available with right mouse button).

3. Open ccdmodel.genmodel and process

a. Generate Model Code

b. Generate Edit Code

c. Generate Editor Code

The best way to adapt the diagrams (if necessary) is to follow the descriptions of the Eclipse GMF

project and generate the diagrams.

2.4.2. Replacing the CCD Meta-Model with another Meta-Model

It is possible to use the CCD Annotation Editor with other Ecore models. Therefore the elements, of

the new model, which should be able to be annotated, should implement the annotation meta-model

(see Figure 4 above). How to create an Ecore model and implement respective editors is described in

(Steinberg, 2009).

Then the eclipse extension point “org.eclipse.ui.editors” needs to be used. The name of the

extension needs to be changed to the extension of the created Ecore model.

 <editor class="org.ocopomo.annotation.presentation.AnnotationEditor"

contributorClass="org.ocopomo.annotation.presentation.AnnotationEdi

torActionBarContributor"

default="true"

extensions="ccd"

icon="icons/ocopomo.png"

id="org.ocopomo.annotation.presentation.AnnotationEditor"

name="%editor.name">

</editor>

Each element displayed in the Annotation Editor can have an icon. Therefore for each element, the

extension point “org.eclipse.core.resources.markers” needs to be configured:

<extension id="org.ocopomo.annotation.editor.marker.<nameOfTheElement>"

name="<Full Name>"

point="org.eclipse.core.resources.markers">

<super type="org.ocopomo.annotation.editor.marker"></super>

</extension>

The following code fragment shows the configured extension point for Actor:

<extension id="org.ocopomo.annotation.editor.marker.actor"

point="org.eclipse.core.resources.markers"

name="Actor">

<super type="org.ocopomo.annotation.editor.marker"/>

</extension>

In the plug-in, the icons need to be in the folder with name “icons”. Each icon needs to have the name

of the respective model element (e.g. Actor.gif for the example above).

If another meta model is used, the best way to use diagrams is to follow the descriptions of the Eclipse

GMF project and generate the diagrams.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 11 of 27

2.4.3. Translate a CCD Model

In case that a CCD model has been created in different language as target stakeholders' group would

like to use please use these guidelines for simple localization of CCD files:

Prerequisites:

1. Installed Java RE 6, (http://www.oracle.com/technetwork/java/javase/downloads/index.html)

2. Installed SaxonHE9 (http://sourceforge.net/projects/saxon/files/Saxon-HE/9.4/SaxonHE9-4-0-

6J.zip/download)

3. Download and unpack: http://ocopomo.ekf.tuke.sk/svn/ocopomoprj/trunk/eclipse/updatesite/

TranslationXsltTemplates.zip

Translation process:

1. Convert CCD file to CSV file:

java -jar saxon9he.jar -s:<input ccd file> -xsl:ccd2csv.xslt

 -o:<output csv file>

2. Translate CSV file to desired language (use supporting tools: MS Excel and Google translator)

3. Convert translated CSV file to XML format:

java -jar saxon9he.jar -it:main -xsl:csv2xml.xslt

-o:<output xml file> translated=<translated csv file>

encoding=<encoding of csv file i.e.: Windows-1250, UTF-8>

4. Convert original CCD file to translated CCD:

java -jar saxon9he.jar -s:<original input ccd file>

-xsl:ccdAndXml2ccd.xslt -o:<output translated ccd file>

translated=<xml translation from step 3>

Localized CCD files can be published to the remote Alfresco Data Repository following the process

described in D4.2-D (Smatana and Furdik, 2013).

2.5. CCD-TO-DRAMS TRANSFORMATION DEFINITION

In order to transform a CCD, which is conforming to the CCD meta-model, into a formal simulation

model, a transformation definition is necessary. Such a transformation definition has been developed

for the DRAMS meta-model.

The CCD meta-model and the DRAMS meta-model have some conceptual similarities. The CCD

meta-model already differentiates between the concepts Actor and Object. Actor differentiates to

Object by the factor that an Actor is able to carry out an action. Thus, an Actor of the CCD-meta-

model corresponds to an "Agent Class" in the DRAMS meta model.

However, the two meta-models are not equally powerful. DRAMS as a formal agent-based simulation

language is more expressive than the CCD meta-model. A formal transformation definition between

both meta-models was described using the "MOF 2.0 Query / View / Transformation Specification"

(QVT). QVT is a standard published in 2008 by the Object Management Group (OMG,

http://www.omg.org) (OMG MOFM2T, 2008). Since 2011, version 1.1 is available (OMG MOF,

2011). It consists of three languages, which form together a hybrid-transformation language.

"Relations" and "Core" are two declarative languages on different abstraction levels, with a normative

mapping between each other. "Operational mapping" is an imperative language, which extends both,

"Relations" and "Core" languages. The "Relations" language specifies a transformation as a set of

relationships between models and has a graphical concrete syntax, too. The meta-models to be

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://sourceforge.net/projects/saxon/files/Saxon-HE/9.4/SaxonHE9-4-0-6J.zip/download
http://sourceforge.net/projects/saxon/files/Saxon-HE/9.4/SaxonHE9-4-0-6J.zip/download
http://ocopomo.ekf.tuke.sk/svn/ocopomoprj/trunk/eclipse/updatesite/TranslationXsltTemplates.zip
http://ocopomo.ekf.tuke.sk/svn/ocopomoprj/trunk/eclipse/updatesite/TranslationXsltTemplates.zip
http://www.omg.org/

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 12 of 27

transformed need to be conform to the MOF meta-meta model. Figure 6 visualizes the transformation

definition between CCD meta model and DRAMS meta model using QVT.

Figure 6: Transformation definition.

Each transformation relation has a name (e.g. RootToBasics), a number (e.g. Relation 1), a starting

domain (left side of the relation) and an ending domain (right side of the relation). The “where”

conditions are described with solid arrows between relations.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 13 of 27

The starting relation Relation 1: RootToBasics assigns a "CCD" to a "simulation model", which

consists of "DeclarativePart" and "ImparativePart" In this relation, however, no concrete elements are

created, instead, this condition is referred to three other relations in the "where" condition.

The specification of relations in the "where" condition means that the given relations are applied to the

parameters. Thus, for each "CCD" of Relation 1: RootToBasics the Relation 2: Annotations is applied.

This relation transforms "annotations" of CCD elements to "Comments" in DRAMs. The value of

"phrase" is used as the value of "comment text".

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 14 of 27

A "CCD" has a name; this name is used as part of the "model class". As Relation 3: ImperativeBasics

shows, the abstract "agent class" also receives the name as the name prefix.

In the Relation 4: DeclarativeBasics, an "enum" is mapped to a "TypeDefiniton".

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 15 of 27

"Actors" are generated as a specialization of the abstract "agent class" "model agent".

With Relation 6: ActorHierarchies, hierarchies of "Actors" in CCD are mapped to "Agent Classes" in

DRAMS.

For instances of "Actors", initialization statements for the respective “agent class” are created in the

"build model" method in the "model class".

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 16 of 27

In Relation 8: ObjectsToFactTemplates "objects" and their "attributes" are mapped to "Fact Template"

and their "slots". The fact that the choice of data types for "attribute" in CCD is a subset of the data

types of "slots" in DRAMS, the data type is used directly.

In CCD "relations" between "Concepts" are possible. In DRAMs simulation models, this is feasible

without typing, therefore the correct usage at the instance level lies in the hands of the modeler.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 17 of 27

In Relation 9: ObjectsToFactTemplatesRelationsAddon the name of a “Relation” of an “Object” is

mapped to a "slot" in the corresponding "Fact Template". As the data type of the "slots" "string" is

specified.

In Relation 10: ObjectHierarchies, hierarchies of "objects" are processed. In DRAMS, no inheritance

relationships exist for "Fact Templates". Inheritance is therefore resolved by mapping. That means, all

"attributes" of the generalizations of "objects" are copied into the "Fact Template". This relation is

considered specifically in this form only in the direction of CCD to DRAMS.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 18 of 27

In Relation 11: Object HierarchiesRelationsAddon the above mentioned mapping of "Relations" for

objects that lie deeper in the hierarchy is implemented.

Instances of "objects" are mapped to "facts" with the same name. Both name and data type of

"attributes" are accordingly for "slots". The relationship described above from "Objects" with

"Concepts" on "Relations" works here at the level of instances. Accordingly, the "RelationInstance" is

the name for "slot name" and of the "Instance" is the name for "value" of "slots".

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 19 of 27

3. CCD ANNOTATION EXTENSIONS AND CONTENT REPOSITORY CLIENT

3.1. ARCHITECTURE OVERVIEW

The scheme depicted in Figure 7 presents the main plug-ins of the CCD Annotation Extensions and

Content Repository Client.

Figure 7: Overview of CCD Annotation Extensions and Content Repository Client plug-ins.

Following, the main plug-ins are shortly described.

 Annotation Extension Point Plug-in (org.ocopomo.annotation.extension): Plug-in that

provides extension point for creation of new annotation extension (new file types or new

functionality).

 Html Annotation Plug-in (org.ocopomo.annotation.html): Plug-in that is used for

annotation of HTML files (mainly Alfresco wiki pages) onto CCD model.

 MyNote Annotation Plug-in (org.ocopomo.annotation.mynote): Plug-in that is used for

annotation of plain text onto CCD model. Plain text file could be modified in process of

annotation.

 Pdf Annotation Plug-in (org.ocopomo.annotation.pdf): Plug-in that is used for

annotation of PDF files onto CCD model.

 CCD Editor Extension Plug-in (org.ocopomo.annotation.extension.editor): Plug-in

that extends of CCD Editor Plug-in. This plug-in is able to recognize all annotators that has

implemented Annotation Extension Point.

 InterSoft Utilities Plug-in (org.ocopomo.is.utils): Plug-in that provides utilities for

parsing specific XML files and logging support.

 GATE Utilities Plug-in (org.ocopomo.annotation.gate): Plug-in that wraps GATE core

library and provides API for initialization and usage of GATE annotation management.

 Content Repository Client Plugin (org.ocopomo.contentrepositoryclient): Plug-in

that provides API and GUI for remote accessing of Alfresco content repository via CMIS and

REST.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 20 of 27

3.2. SETUP OF DEVELOPMENT ENVIRONMENT AND DEVELOPMENT CYCLE

To start developing new components or to customize CCD Annotation Extension components, the

developer should install an Eclipse Indigo version. The developer should further install PLUGIN

Development tools and CCD Tools plug-ins from the OCOPOMO and Eclipse Project update sites. It

is further necessary to include the CCD Annotation Extensions and Content Repository Client

packages into the workspace.

3.3. CCD ANNOTATION EXTENSIONS - INTERFACE DESCRIPTION

It is designed as an extension point org.ocopomo.annotator that could be implemented by all

annotation extensions. Annotation extension is then resolved by CCD Editor Extension and editor is

able to accept these new file types associated with new annotation extension and display them. New

Eclipse extension point extends CCDTextAnnotator (see Figure 8).

Figure 8: Hierarchy of Annotation Extensions.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 21 of 27

3.3.1. PDF Annotator

PDF Annotator incorporated JPedal which is open source PDF viewer. Updated org.jpedal library

is used for displaying and annotation of PDF files. Original library is not able to handle annotation

therefore we were implemented some modifications of the library to support displaying of annotation

in PDF files. The major modifications are:

 Class org.jpedal.PdfAnnotation used for storing annotations (see Figure 9)

 org.jpedal.SingleDisplay method drawPage(AffineTransform viewScaling,

AffineTransform displayScaling, int pageUsedForTransform): Rectangle

should display listed annotations

 org.jpedal.PdfDecoder main class that is used for creation of PDF Viewer

Figure 9: PdfAnnotation class.

All PDF annotations are stored as reference to individual page and areas defined as rectangles from

which that annotations are consisted. Individual rectangle areas are defined as absolute position of top-

left pixel and as absolute position bottom-right pixel.

3.3.2. HTML Annotator

Core of HTML annotator is javax.swing.JTextPane component. This component models

paragraphs that are composed of runs of character level attributes. Each paragraph may have a logical

style attached to it which contains the default attributes to use if not overridden by attributes set on the

paragraph or character run. Components and images may be embedded in the flow of text. It also

supports HTML file formats.

3.3.3. MyNote Annotator

MyNote Annotator is a plug-in that allows to annotate plain text files onto CCD model. These plain

text files could be modified during annotation process. files annotated by the MyNote Annotator are

displayed as plain text but they are XML files containing tags that allows referencing text parts via

CCD model. Referencing by start character and length is unsuccessful because text could be modified

and CCD model will reference to wrong area.

XML files are created and managed by GATE library. Displaying of plain text is managed by

org.eclipse.jface.text.source.projection.ProjectionViewer which allows to hide

Master XML Document from users and display only its projection (see Figure 10).

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 22 of 27

Figure 10: Basic principle of projection Viewer.

3.3.4. CCD Editor Extension

CCD Editor Extension extends the CCD Editor plug-in and it is able to recognize all annotation

extensions that extend org.ocopomo.annotation extension point.

3.4. CONTENT REPOSITORY CLIENT

The Content Repository Client component is developed as a graphical extension of CMIS and REST

protocols and as an internal high-level API for communication between a remote Alfresco content

repository and local Eclipse components. For example, Simulation Analysis Tool, described in

Chapter 4 below, uses it for publishing output model-based scenarios (see also in D4.2-D (Smatana

and Furdik, 2013)). CCD Tool uses the Content Repository Client mainly for annotation of a content

located in the Alfresco content repository.

Figure 11: Sequence diagram of basic principle of displaying of Alfresco.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 23 of 27

ContentView is a visualisation component of the Content Repository Client, which enables displaying

the Alfresco repository structure in the Eclipse environment. Figure 11 shows a sequence diagram how

user access remote content via ContentView. All retrieved content is locally cached for further usage in

document folder.

CMIS defines a data model, which encapsulates the core concepts found in most content repositories.

Alfresco provides an implementation of the CMIS bindings and maps the Alfresco content meta-

model to the CMIS domain model. This allows content models defined in Alfresco to be exposed and

manipulated via CMIS protocol (Alfresco Help, 2013). Figure 12 shows CMIS domain model where

main concepts used by content repository client are described here:

 Document is similar to a file, it has properties to hold document metadata, such as the

document author and modification date and custom properties. It can also contain a content

stream.

 Folder is self-explained, it is container for other objects. Note, that apart from default

hierarchical structure, CMIS is optionally able to store objects in multiple folders or in no

folders at all.

Figure 12: CMIS domain model.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 24 of 27

4. SIMULATION ANALYSIS TOOL

4.1. ARCHITECTURE OVERVIEW

The scheme depicted in Figure 13 presents the main plug-ins of the Simulation Analysis Tool.

Figure 13: Overview of Simulation Analysis Tool plug-ins.

Following, the main plug-ins are shortly described.

 Simulation Analysis Tool Plug-in (org.ocopomo.simulationanalysistool): Plug-in

that provides tool for creating and annotating of model-based narrative scenarios.

 InterSoft Utilities Plug-in (org.ocopomo.is.utils): Plug-in that provides utilities for

parsing specific XML files and logging support.

 GATE Utilities Plug-in (org.ocopomo.annotation.gate): Plug-in that wraps GATE core

library and provides API for initialization and usage of GATE annotation management.

 Content Repository Client Plug-in (org.ocopomo.contentrepositoryclient): Plug-in

that provides API and GUI for remote accessing of Alfresco content repository via CMIS and

REST protocols.

4.2. SETUP OF DEVELOPMENT ENVIRONMENT AND DEVELOPMENT CYCLE

To start developing new components or to customize Simulation Analysis Tool, the developer should

install an Eclipse Indigo version. The developer should further install PLUGIN Development tools and

CCD Tools plug-ins from the OCOPOMO and Eclipse Project update sites. It is further necessary to

include the Simulation Analysis Tool and Content Repository Client packages into the workspace.

4.3. SIMULATION ANALYSIS TOOL - PLUG-IN DESCRIPTION

We have used basic plug-in mechanism of Eclipse to implement Simulation Analysis Tool. Whole tool

is embedded into org.ocopomo.simulationanalysistool plug-in. This plug-in contains main

implementation of the tool. Figure 14 shows the Simulation Analysis Tool perspective in Eclipse

presenting the main visible components of this tool.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 25 of 27

Figure 14: Visible components of Simulation Analysis Tool.

 SatPerspective (org.ocopomo.simulationanalysistool.perspective.

SatPerspective): Defines layout of the Simulation Analysis Tool.

 LogView (org.ocopomo.simulationanalysistool.viewer.LogView): Provide viewer

for displaying plain text viewer for logs and table viewer for search functionality

 AnnotationView (org.ocopomo.simulationanalysistool.viewer.

AnnotationView): Simple table viewer for displaying of all annotations in current edited

narrative. Main component for implementation of this viewer is

org.eclipse.jface.viewers.TableViewer.

 ModelNarrativeEditor (org.ocopomo.simulationanalysistool.editors.

ModelNarrativeEditor): Editor used for creation and annotation of model-based narrative

scenarios.

The ModelNarrativeEditor and LogViewer modules are described in next sections.

4.3.1. Model Narrative Editor

Model Narrative Editor allows creation of model-based narrative scenarios in plain text format and

user can annotate them to related log files. These plain text files could be modified during annotation

process. Annotated files are displayed as plain text but they are XML files containing tags that

reference text parts of specific log files. XML files are created and managed by GATE library.

Displaying of plain text is managed by org.eclipse.jface.text.source.projection.

ProjectionViewer which allows to hide Master XML Document from users and display only its

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 26 of 27

projection (see Figure 15). Annotated files contains two main parts: textual content mixed with node

elements and part of annotation with references to start and end node of textual content with additional

information.

Figure 15: Basic principle of ProjectionViewer.

4.3.2. Log View

LogView uses two components for displaying a content of simulation logs:

 org.eclipse.jface.text.source.SourceViewer: This configured viewer is able to

display log files in plain text form with its annotations contained in opened model-based

narrative scenario. This component does not process displayed content it displays it as is

stored in log file.

 org.eclipse.jface.viewers.TableViewer: This component parse XML log files, filter

all markups and display only relevant formatted content. StAX (http://stax.codehaus.org/)

parser is used to parse XML log files because it does not store whole model in memory (it is

necessary because log files could be tens of MB length).

4.4. TRACEABILITY EXPLANATION

The basic traceability annotation mechanism of linking a model-based scenario to the respective input

materials, i.e. the evidence-based scenarios and background documents, via simulation log records and

CCD model elements, is depicted in Figure 16. The text highlighted in the model-based scenario wiki

page corresponds to the "simulation-based fact X" since it was derived from the respective simulation

log record (i.e., an expert marked this relationship in the Simulation Analysis Tool). The log record

refers to one or more CCD model concepts, which were used as annotation marks in evidence-based

scenarios and/or background documents.

Figure 16: Generating traceability information from annotated model based scenarios.

http://stax.codehaus.org/

D4.2 SYSTEM AND USER DOCUMENTATION

SD-2: SYSTEM DOCUMENTATION OF CCD

TOOL AND ANNOTATON EXTENSIONS

v.1.00

28/04/2013

 Page 27 of 27

REFERENCES

Alfresco Help - Alfresco content models and CMIS. Alfresco Software Inc., 2013. Available at

http://docs.alfresco.com/3.4/index.jsp?topic=%2Fcom.alfresco.Enterprise_3_4_0.doc%2Fconce

pts%2Fcontent-model-cmis.html (last accessed 18 April 2013).

Bird, S. and Liberman, M.: A Formal Framework for Linguistic Annotation. Technical Report MS-

CIS-99-01, Department of Computer and Information Science, University of Pennsylvania,

1999.

Cunningham, H. et al: Text Processing with GATE (Version 6). University of Sheffield, Department of

Computer Science. 15 April 2011. Available at http://gate.ac.uk/releases/gate-6.1-build3913-

ALL/tao.pdf (last accessed 18 April 2013).

Eclipse Platform Plug-in Developer Guide. The Eclipse Foundation, 2005. Available at

http://archive.eclipse.org/eclipse/downloads/drops/R-3.1-200506271435/org.eclipse.platform.

doc.isv.3.1.pdf.zip (last accessed: April 18th, 2013).

Fielding, R. T.: Architectural Styles and the Design of Network-Based Software Architectures. Ph.D.

Dissertation. University of California, Irvine, 2000.

Grishman, R: TIPSTER Architecture Design Document, Version 2.3. Technical report, DARPA, 1997.

Available at http://www.itl.nist.gov/div894/894.02/related_projects/tipster/ (last accessed 18

April 2013).

Ide, N., Bonhomme, P., and Romary, L.: XCES: An XML-based Standard for Linguistic Corpora. In:

Proceedings of the Second International Language Resources and Evaluation Conference

(LREC), pp 825-830, Athens, Greece, 2000.

OMG MOF - Meta Object Facility 2.0 Query/View/Transformation Specifcation, v1.1. OMG

Available Specification, Document Number: formal/2011-01-01 (2011, January 1). Technical

report. Object Management Group, 2011.

OMG MOFM2T - MOF Model to Text Transformation Language, v1.0. OMG Available Specification,

Document Number: formal/2008-01-16 (2008, January 16). Technical report. Object

Management Group, 2008.

Scherer, S., Wimmer, M. A., Moss, S., Smatana, P., and Furdik, K.: D4.2-B: User Manual on CCD

Tools. Annex to Deliverable 4.2, OCOPOMO consortium, 2013.

Smatana, P. and Furdik, K.: D4.2-D: User Manual on Tools for Simulation Analysis and Output

Scenario Generation. Annex to Deliverable 4.2, OCOPOMO consortium, 2013.

Steinberg, D.: Eclipse modeling framework. The Eclipse series, 2. ed. Upper Saddle River, NJ,

Addison-Wesley, 2009.

http://docs.alfresco.com/3.4/index.jsp?topic=%2Fcom.alfresco.Enterprise_3_4_0.doc%2Fconcepts%2Fcontent-model-cmis.html
http://docs.alfresco.com/3.4/index.jsp?topic=%2Fcom.alfresco.Enterprise_3_4_0.doc%2Fconcepts%2Fcontent-model-cmis.html
http://gate.ac.uk/releases/gate-6.1-build3913-ALL/tao.pdf
http://gate.ac.uk/releases/gate-6.1-build3913-ALL/tao.pdf
http://archive.eclipse.org/eclipse/downloads/drops/R-3.1-200506271435/org.eclipse.platform.doc.isv.3.1.pdf.zip
http://archive.eclipse.org/eclipse/downloads/drops/R-3.1-200506271435/org.eclipse.platform.doc.isv.3.1.pdf.zip

