

OCOPOMO

Open Collaboration in Policy
Modelling

D 4 . 2 S Y S T E M A N D U S E R

D O C U M E N T A T I O N

S D - 1 : S Y S T E M D O C U M E N T A T I O N O F

O C O P O M O A L F R E S C O T O O L S

Document Full Name OCOPOMO_D4.2-SD1_Alfresco-SysDoc.doc

Date 16/04/2013

Work Package WP4: Integration of components

Lead Partner Intersoft

Authors Peter Bednár, Carsten Hartenfels

Document status v1.00 FINAL

Dissemination level PUBLIC (PU)

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 2 of 25

TABLE OF CONTENTS

1. INTRODUCTION ... 3

1.1. SPRING WEB SCRIPTS ... 3
1.2. SPRING SURF .. 3

2. GENERIC ARCHITECTURE OF OCOPOMO ALFRESCO COMPONENTS .. 5

2.1. FILE LOCATIONS ... 6
2.2. SETUP OF DEVELOPMENT ENVIRONMENT AND DEVELOPMENT CYCLE ... 7

3. STRUCTURE OF SOFTWARE PACKAGES ... 8

3.1. COMMON PACKAGE .. 8

3.1.1. Traceability extensions... 9

3.1.2. CCD Explorer .. 9

3.1.2.1. File Index ... 9

3.1.2.2. Program Arguments ... 10

3.1.2.3. Java Web Start ... 11

3.1.2.4. Applet ... 11

3.1.2.5. Comments .. 13

3.1.3. Wiki Page Formatting extensions .. 13

3.1.4. Localization .. 14
3.2. POLLING PACKAGE ... 14
3.3. CHAT PACKAGE .. 18
3.4. VISUALIZATION PACKAGE .. 23

4. CONCLUSION.. 25

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 3 of 25

1. INTRODUCTION

The main implementation technology for developing the suite of OCOPOMO Alfresco tools is Spring

Web Scripts, http://wiki.alfresco.com/wiki/Web_Scripts, and Spring Surf framework,

http://wiki.alfresco.com/wiki/Spring_Surf. These technologies will be detailed in the following

sections.

1.1. SPRING WEB SCRIPTS

Spring Web Scripts can be divided to data web scripts and presentation layer web scripts used in the

Spring Surf framework. Data web scripts provide access to the content stored in the repository through

REST-like API bounded to the URI that responds to HTTP methods such as GET, POST, PUT, and

DELETE.

Web Script is defined using the following components:

 XML configuration descriptor file - defines identification name and documentation

description, URL pattern on which the script will be bounded and configuration options for

authentication and transactions. A URI template is a URI containing tokens that may be

substituted with actual values. Tokens may represent values to query parameters or values

within the URI path where the syntax for expressing a token is {<token name>}. For example,

to specify URI with two query parameters - one named "a" and the other named "b", the

pattern should be defined like: /add?a={a}&b={b}.

 Controller - implements application logic programmed for the script. Script controller can be

programmed using the server-side JavaScript or Groovy or it can be implemented as the Java

class. The role of the controller is to process data received as the API parameters and/or create

a data model, which will be rendered in the API response using the Web Script template.

 Response template - render output in the correct format for specific needs, such as HTML,

Atom, XML, RSS, JSON, CSV, or any combination of these. Templates can be implemented

in FreeMarker or PHP.

All scripts developed for OCOPOMO Alfresco tools are implemented using the server-side JavaScript

and FreeMarker templates. Communication protocols are based on JSON format.

More information about the Spring Web Scripts can be found at:

http://docs.alfresco.com/4.0/index.jsp?topic=%2Fcom.alfresco.enterprise.doc%2Fconcepts%2Fws-

architecture.html

1.2. SPRING SURF

The user interface of OCOPOMO Alfresco Tools is implemented as the extensions or modules for

Alfresco Share (http://wiki.alfresco.com/wiki/Alfresco_Share), which is implemented using the Spring

Surf framework.

Surf is a Spring framework extension for building new Spring framework applications or plugging into

existing Spring web MVC (Model, View, Controller) applications. Spring Web MVC provides

separation between the application Model, View, and Controller (known as MVC). You can use Surf

with other popular Spring Web MVC technologies including Tiles, Grails, and Web Flow.

The main part of the Surf is the View composition framework, which defines the following user

interface items:

 Page - defines user interface view bounded to the specified URL of the Alfresco Share

application. User can navigate to the page with browser. Pages are defined using the XML

http://wiki.alfresco.com/wiki/Web_Scripts
http://wiki.alfresco.com/wiki/Spring_Surf
http://docs.alfresco.com/4.0/index.jsp?topic=%2Fcom.alfresco.enterprise.doc%2Fconcepts%2Fws-architecture.html
http://docs.alfresco.com/4.0/index.jsp?topic=%2Fcom.alfresco.enterprise.doc%2Fconcepts%2Fws-architecture.html
http://wiki.alfresco.com/wiki/Alfresco_Share

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 4 of 25

descriptor file, which specifies documentation title and description, reference to the template

instance used for page rendering and authentication options.

 Page Template - defines the layout for pages. HTML markup of the layout is defined in the

FreeMarker template type, which divides page to regions. Region is a placeholder in the page

layout, which is rendered by specified component. Particular page specifies template instance

- XML descriptor file, which bounds particular components (presentation web scripts) to

particular region specified for the selected template type. It means that the same layout

defined by one template type can be reused on many pages and rendered in different way

depending on which components were mapped to the template regions in template instance

descriptor.

 Page Component - usually associates a region with a presentation web script, which generate

the HTML markup. The same Web script can be reused on multiple pages or in different

regions on the same page, i.e. each view can be effectively decomposed to the reusable parts.

More information about the Spring Surf can be found at:

http://docs.alfresco.com/4.0/index.jsp?topic=%2Fcom.alfresco.enterprise.doc%2Fconcepts%2Fws-

architecture.html

http://docs.alfresco.com/4.0/index.jsp?topic=%2Fcom.alfresco.enterprise.doc%2Fconcepts%2Fws-architecture.html
http://docs.alfresco.com/4.0/index.jsp?topic=%2Fcom.alfresco.enterprise.doc%2Fconcepts%2Fws-architecture.html

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 5 of 25

2. GENERIC ARCHITECTURE OF OCOPOMO ALFRESCO COMPONENTS

The scheme depicted in Figure 1 presents the generic architecture used to implement OCOPOMO

Alfresco Components. It summarizes interaction of all components in Spring Web Scripts or Spring

Surf framework The following sections contain descriptions and instructions on how to perform the

most common operations of the Collaboration and Scenario Generation tools. Operations are grouped

according to the site components.

Figure 1: Architecture of OCOPOMO Alfresco components.

When the user navigates to the Alfresco Share page, the request is process by the Spring Surf

framework using the following procedure:

1. At first, Surf matches the requested URL to the page descriptor. Page descriptor points to the

template instance with the associated template type and mappings of page regions to page

components.

2. For each page region defined in the template instance, Surf framework invokes associated

component web script, which generates HTML markup for the region. Component web script

fetches data model from the services. Service APIs are usually implemented using the data

web scripts generating the data model encoded in JSON.

3. Surf will invoke FreeMarker template engine to parse and render page template type. Page

template type generates final HTML mark-up for the page view, which consists of the main

layout specified in the template type and embedded mark-ups for all regions.

Alternative way how the view page is generated/modified is based on the dynamic HTML approach,

which can be combined with the content generated by the Surf request processing. In dynamic HTML

approach, view is modified using the JavaScript framework such as Yahoo YUI library, which is

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 6 of 25

directly modifying browser HTML representation of the page. Data model is fetched directly from the

service by the client-side JavaScript component. Both approaches can be arbitrary combined.

Data are updated directly by invoking of the service APIs by client-side JavaScript component, which

encode updated data into the JSON format and invoke POST or DELETE HTTP request to the service

URL.

2.1. FILE LOCATIONS

Web script component file names adhere to the following naming conventions:

 Descriptor: <script id>.<HTTP method>.desc.xml

 Controller: <script id>.<HTTP method>.js

 Template: <script id>.<HTTP method>.<format>.<status code>.ftl

where:

 <script id> identifies the web script and must be the same for all components of the same

script;

 <HTTP method> specifies which HTTP method will initiate the web script;

 <format> specifies a format generated in the response (usually JSON for data scripts or

HTML for presentation scripts);

 <status code> [optional] specifies that template will be used to render output only when the

controller set specified HTTP response status code.

The Alfresco platform provides an extension mechanism, which allows overwriting of the settings or

customization of the implemented pages and web scripts without the overwriting the original files. The

extensions are stored in the %ALFRESCO\tomcat\shared\classes directory, where %ALFRESCO is

the root directory of the local installation of the Alfresco software. Table 1 provides the list of

directories for OCOPOMO Alfresco Tools (all directories are relative to the

%ALFRESCO\tomcat\shared\classes directory).

Table 1: Directories for the installation of OCOPOMO Alfresco tools.

File locations for web scripts and pages

alfresco/extension/templates/webscripts/org/alfresco/slingshot/<page component>

Data web scripts for the <page component> (i.e. for example, pollings or wiki).

alfresco/web-extensions/site-data/pages

Page descriptors for user interface views.

alfresco/web-extensions/site-data/template-instance

Template instances XML descriptor files, which associate components with the regions in layout

template for the specified page.

alfresco/web-extensions/site-webscripts/org/alfresco/components/<page component>

Presentation web scripts for the <page component> (i.e. for example, pollings or wiki). Web

scripts for page components.

alfresco/web-extensions/templates/org/alfresco

FreeMarker templates for layout template types.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 7 of 25

Additionally to files for Spring Web Scripts and Spring Surf frameworks, Table 2 summarizes

directories for web resources (such as CSS, icon picture files, etc.) and client-site JavaScript. All web

resource files are deployed directly in the %ALFRESCO\tomcat\ webapps\share directory.

Table 2: Directories for web resources of OCOPOMO Alfresco tools.

File locations for web resources

components/<page component>

web resources and client-site JavaScript files for the <page component> (i.e. for example, pollings

or wiki).

modules/<module>

web resources and client-site JavaScript files for the reusable <module> (i.e. online text editor,

form engine, etc.)

themes/defaults

shared web resources (for example picture files with the application logo etc.)

2.2. SETUP OF DEVELOPMENT ENVIRONMENT AND DEVELOPMENT CYCLE

To start developing new components or to customize OCOPOMO Alfresco components, the developer

should install local installation of the Alfresco platform. The installation instructions for selected

platform available on:

http://docs.alfresco.com/4.0/index.jsp?topic=%2Fcom.alfresco.enterprise.doc%2Fconcepts%2Fsimplei

nstalls-community-intro.html

During the development, please follow these steps:

1. If you are developing new web script or page, copy descriptors, scripts and template files for

the new component into the extension directories described in the previous chapter File

locations.

2. Restart your Alfresco installation to register new scripts and pages.

3. Implement any changes in the templates or JavaScript files to modify application logic or

generated content.

4. To update data web scripts deployed on the Alfresco CSM; navigate to

http://localhost:8080/alfresco/service/index page. On this administration page you can list all

available web scripts. Click on Refresh web scripts to refresh the running installation with the

edited changes. To update presentation web scripts or pages, navigate to

http://localhost:8080/share/service/index page to refresh Alfresco Share scripts.

5. Refresh modified page in the browser.

The refreshing of the web scripts is not necessary when you are modifying client-site JavaScript files

located in the Alfresco Share deployment directory %ALFRESCO\tomcat\webapps\share. In this case,

you can directly refresh modified page in the browser.

http://docs.alfresco.com/4.0/index.jsp?topic=%2Fcom.alfresco.enterprise.doc%2Fconcepts%2Fsimpleinstalls-community-intro.html
http://docs.alfresco.com/4.0/index.jsp?topic=%2Fcom.alfresco.enterprise.doc%2Fconcepts%2Fsimpleinstalls-community-intro.html
http://localhost:8080/alfresco/service/index
http://localhost:8080/share/service/index

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 8 of 25

3. STRUCTURE OF SOFTWARE PACKAGES

The distribution of the OCOPOMO Alfresco components is divided to the following installation

packages:

 common package - contains common OCOPOMO extensions for the base Alfresco

installations. Most extensions are related to the Wiki page component and Document Library

component, which is used for the scenario editing and extensions for the traceability. This

package also contains Slovak localization for the Alfresco platform.

 polling package - contains files implementing Polling manager.

 chat package - contains files implementing Chat manager.

 visualization package - contains extensions of the Wiki page component and internal HTML

editor for embedding of the data visualization charts. This package also contains data proxy

required for the data visualization and CCD Explorer.

Each package can be installed independently from others, i.e. administrator can decide to use only the

selected tools and developers can install only the customized component. The system documentation

described in the following chapters is organized according to the installation packages.

3.1. COMMON PACKAGE

The common package contains a set of basic configuration files, web scripts and resources for

OCOPOMO extensions of components, which were reused from the Alfresco Share collaboration

platform (such as Wiki page and Document Library used for scenario editing and presentation of

simulation results). It also contains localization files for Slovak and Italian language (English language

is supported by default). Scheme depicted in Figure 2 summarizes these extensions and their

interaction with the components reused from the Alfresco platform.

Figure 2: Extensions provided within the common package.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 9 of 25

3.1.1. Traceability extensions

The suite of Traceability tools is the main extension of OCOPOMO Alfresco tools, which consist of

the extensions for Wiki page HTML formatting that enables a presentation of traceability annotations

as well as an integration of the CCD Explorer applet.

The Wiki page visualization is extended with a new content parser, which extracts annotation elements

from the Wiki HTML content. Annotations elements have the following structure:

<span class="annotation" id="<element id>" data ="<JSON annotation object>">

annotated HTML content

where <element id> is the ID of the span HTML element used for referencing and <JSON annotation

object> is the object with references to the relevant CCD concepts assigned in this annotation and

array of links to the evidence-based scenarios and background documents used for the annotation.

More information about the embedded JSON annotation object can be found in the documentation of

Simulation Analysis tool.

Traceability content parser registers for each annotation element mouse click handler, which displays

popup dialog window with the list of relevant links to the evidence-based scenarios and background

document. In this dialog, user can also invoke CCD Explorer, which is lunched with the filtering

options displaying only the part of the CCD diagrams with the concepts relevant for the selected

annotation.

The CCD Explorer applet is deployed as the resource in %ALFRESCO\tomcat\webapps

\share\applets. Besides of the annotation dialog, the Wiki page view was also extended with the direct

link to CCD Explorer, i.e. user can directly start to brows unfiltered diagrams.

3.1.2. CCD Explorer

The CCD Explorer, also referenced as CCD Model Explorer applet, is available both as a desktop

application, provided via Java Web Start of JRE (version 6 or higher is required) , as well as an applet

built into a web site. In case of the OCOPOMO ICT toolkit, the CCD Explorer is embedded into the

Alfresco web application.

CCDExplorerApplet_JavaDoc.zip - see the accompanying zip package that contains

the documented source code in JavaDoc and implementation code examples for the

CCD Model Explorer applet.

3.1.2.1. File Index

To have any functions available, the CCD Web Interface needs to be provided with a file index. That

file index comes as an XML file called index.xml. It should be created using the index file generator

pointing to the folders created by the Eclipse CCD tool. All file paths are relative to the folder the

index.xml resides in. See http://userpages.uni-koblenz.de/~ocopomo/ccdexplorer/ for an example file.

In the next paragraphs, we explain the structure of the index.xml file used for CCD Explorer.

The index node is the root node of the index.xml. It needs to have a name attribute specifying the

name of the CCD project.

Example:

<index name="KosiceExtended"> ... </index>

http://userpages.uni-koblenz.de/~ocopomo/ccdexplorer/

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 10 of 25

Files referenced in the index.xml represent source and data files used in the related OCOPOMO Java

project. A file node needs to have a name attribute specifying the file name and a path attribute

specifying its path relative to the folder the index.xml resides in. File nodes should be closed

immediately, since they cannot contain other nodes. Currently supported file types are *.ccd,

*.ccd_actions, *.ccd_diagram, *.ccd_instances, and *.txt.

Example:

<file name="KosiceExtended:ccd" path="KosiceExtended:ccd"/>

Folders in the index.xml represent folders in the related OCOPOMO Java project. A documents folder

is usually necessary for CCD files. A folder node needs to have a name attribute specifying its name

and can contain more folders and files.

Example:

<folder name="documents"> ... </folder>

3.1.2.2. Program Arguments

The CCD Explorer needs to be provided with a handful of arguments to function accordingly.

Depending on the way the program is implemented, there are different ways to specify these

arguments, as it is explained in Table 3.

Table 3: Program arguments for the CCD Explorer tool.

Argument Description

path

The path argument must be a URI that points to the folder where the index.xml resides.

Do not directly point the path to the index.xml, merely point it to the folder it is in. A

path argument must be given. The prefix for this argument is path.

Example: if the index.xml's location is http://www.ocopomo.eu/project/index.xml, then

the correct path for this project would be http://www.ocopomo.eu/project/.

user The user name of the current user. Will be used for comments. If a user name is not

provided, the user will not be able to comment on anything. The prefix for this

argument is user.

url The full URL to the server where comment data should be uploaded. When

synchronizing comments, the CCD Web Interface will attempt to connect to that exact

URL and upload the synchronized comment.xml data there. If a URL is not provided or

if the given URL is invalid, it will not be possible to upload user comments to the

server. The prefix for this argument is url.

com Sets the upload type for comments. Possible values are everything or all for upload of

the entire comments.xml and changes or dif for cumulative upload of the changes only.

For testing purposes comments can be written to a local file using tofile or file.

If the upload type is not provided or if the upload type is invalid, comment upload will

be disabled and the user will not be able to comment on anything.

lang Sets the language of the CCD Web Interface. Currently available languages are en

(English) and de (German).

If no or an invalid locale is given, the language will default to English. The prefix for

this argument is lang.

http://www.ocopomo.eu/project/index.xml
http://www.ocopomo.eu/project/

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 11 of 25

3.1.2.3. Java Web Start

To deploy a Java Web Start program, a JNLP file needs to be created. See the official JNLP

documentation for a structure that should be applied for the respective JNLP file at

http://docs.oracle.com/javase/tutorial/deployment/deploymentInDepth/jnlpFileSyntax.html, as well as

the http://userpages.uni-koblenz.de/~ocopomo/ccdexplorer/ for an example JNLP file.

Arguments for the JavaWeb Start are encompassed in <argument> tags and are located within the

<application-desc> tag. Only one argument can be in every <argument> tag. They can be provided in

any order and must start with their prefix and an equal sign '='.

Example:

<application-desc main-class="eu.ocopomo.web.WebInterface">

<argument>path=http://wwwocopomo.eu/project/</argument>

<argument>user=TestUser</argument>

<argument>url=http://wwwocopomo.eu/project/comments.xml</argument>

<argument>lang=en</argument>

</application-desc>

3.1.2.4. Applet

The CCD Explorer can be implemented into a HTML file using Java's applet functionality. For an

example HTML file, see http://userpages.uni-koblenz.de/~ocopomo/ccdexplorer/.

It is recommended to use <applet> tags (instead of <object> tags) to implement the applet because it

enables pushing commands via JavaScript.

Arguments are passed to an applet using the <param> tag within the <applet> tags. The name attribute

of the parameters are the prefixes presented above in Table 3.

Example:

<applet id='ccdapplet'

 archive='WebInterface.jar'

 code='eu.ocopomo.applet.CCDApplet.class'

 width=800

 height=600>

<param name="path" value="http://www.ocopomo.eu/project/">

<param name="user" value="TestUser">

<param name="url" value="http://www.ocopomo.eu/project/comments.xml">

<param name="lang" value="en">

</applet >

As opposed to the other ways of running the CCD Explorer tool, there are some security

restrictions on the file paths of the applet. As it is described at

http://docs.oracle.com/javase/tutorial/deployment/applet/security.html, applets can only access URLs

from the host they came from. Practically, this means the applet cannot access paths "above" its own

path. For example, if the JAR file of the applet is located at

http://www.ocopomo.eu/project/CCDWebInterface.jar, it can only access files and folders starting

with http://www.ocopomo.eu/project/. Trying to pass a URL that does not start with this host will not

work and cause an error.

Hence both the path and url argument must not point anywhere the applet cannot access, otherwise

upon starting the applet an error message will be shown, similar to the one in Figure 3. This also

means an applet that is run from a local file cannot access the internet.

http://docs.oracle.com/javase/tutorial/deployment/deploymentInDepth/jnlpFileSyntax.html
http://userpages.uni-koblenz.de/~ocopomo/ccdexplorer/
http://userpages.uni-koblenz.de/~ocopomo/ccdexplorer/
http://docs.oracle.com/javase/tutorial/deployment/applet/security.html
http://www.ocopomo.eu/project/CCDWebInterface.jar
http://www.ocopomo.eu/project/

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 12 of 25

Figure 3: Example of the applet error message.

It is possible to push a string of commands to the CCD Explorer applet using JavaScript. The sample

HTML file located at http://userpages.uni-koblenz.de/~ocopomo/ccdexplorer/ demonstrates some

examples for these functions.

In the JavaScript commands outlined below, the parts in [brackets] are optional. All commands are

separated by a semicolon ';'. Avoid whitespace.

push

The push(String) method is used to open any specified file. If a diagram is opened, it can be filtered

by passing UUIDs from the CCD file.

A command is formatted as follows: uri;type;fileName;[full;][filter;][uuid;uuid;...]

pushIds

The pushIds(String) method is used to open a diagram and filter it without needing a URL.

A command is formatted as follows (note that this method needs at least one valid UUID):

[full;]filter;uuid;[;uuid;uuid;...]

uri

The URI of the file relative to the applet's path (see in Table 3).

type

The file type. Possible file types are actions, diagram, instances, tree and txt.

Filtering is possible with the first three file types.

FileName

The name of the file as it should appear on the tab inside the applet. This is purely cosmetic.

full

If this command is given, the applet will be put into full-view mode after the file is opened.

Otherwise, it will be put into normal view, even if the applet was in full view previously.

filter

Sets the filter for the opened diagram. Available filters are none for no filtering, lazy for only

showing selected shapes and the shapes they are connected to and strict for only showing selected

shapes. If an invalid filter is given, it will default to none.

If the opened file is not a diagram, this command will be ignored.

http://userpages.uni-koblenz.de/~ocopomo/ccdexplorer/

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 13 of 25

uuid

The xmi:id of an element that should be selected, as found in the .ccd file for the diagram. Invalid

or empty UUIDs will be ignored.

If the opened file is not a diagram, this command will be ignored.

3.1.2.5. Comments

The CCD Explorer supports adding comments to items in the CCD tree and shapes in diagrams, and

commenting other comments in a web-forum-like manner.

Comments are saved in an XML file called comments.xml. It must reside in the same folder as the

index.xml file. The comments.xml is structured as follows:

root - The outmost node of the XML document is usually called root, but it may have a different

name. Attributes of this node are retained, but ignored. The only children a root node can have are

comment nodes.

comment - This node represents a single comment. It must be a direct child of the root node. A

comment node must not have any child nodes. A comment node has the following attributes:

id - The unique ID of the comment. This ID will remain the same even if the comment is edited. It is

generated as follows:

[author].[current system time in milliseconds].[MD5 hash of the heading]

parent - The unique ID of the parent of the comment. May be another comment or an xmi:id from the

CCD file.

author - The user name of the author of the comment.

head - The caption of the comment.

body - The actual comment text.

Upload - To upload comments, the CCD Explorer will connect to the given URL (see the url argument

in Table 3) and push XML data via HTTP.

Everything - With this upload type, the comments.xml from the server is synchronized with the local

comments. Then, the whole comments.xml will be uploaded, including all previous comments

already existent in the comments.xml on the server. That means, all the server needs to do is

replace the old comments.xml with the new one.

Changes Only - With this upload type, only the XML data of added or changed comments is uploaded

as an XML document. The server will need to add new comments into the existing comments.xml

and replace edited comments.

To File - For testing purposes, comments can be written to a local file system. This upload type will

only work if the path argument (see in Table 3) points to a local file.

Disabled - If comment upload is disabled, the user will not even be able to comment on anything or

edit their comments in the first place. No upload attempts will be made.

Comment upload is disabled if a user name is not provided (the user argument in Table 3) or if no

or an invalid upload type was given (the com argument in Table 3).

3.1.3. Wiki Page Formatting extensions

Besides of the traceability annotations, visualization of the Wiki pages was extended with the various

extensions for the formatting of the HTML content that improve visual appearance of Wiki pages and

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 14 of 25

usability. The extensions are implemented as the add-ons for the Wiki page parser, which parses

HTML content and replaces links typed in Wiki notation, for example:

[[<page name>|<link label>]]

by simple HTML <a> elements.

The extensions includes:

 Support for dynamic table of contents generated from headings;

 Support for embedded preview of documents stored in the Document Library;

 Support for extended tables implemented using the YUI DataTable component. It supports for

example sorting of values by clicking on the column header and can be better customized than

regular HTML tables.

All these extensions dynamically modify source HTML content and add new styles and embedded

elements into the code of the visualized page (content is modified on the client side internally in the

browser and the source Wiki page stored in the repository is not modified).

3.1.4. Localization

The localization and internalization is implemented using the Java resource bundles. Bundles are

stored in the property files for each supported locale. Names of the property files adhere to the

standard naming convention <bundle name> _<locale>.properties.

Property files are stored in the same directory like the web scripts of the corresponding components,

i.e. alfresco/extension/templates/webscripts/org/alfresco/slingshot/<page compo-nent> for data scripts

and alfresco/web-extensions/site-webscripts/org/alfresco /components/<page component> for

presentation scripts. All resource directories are relative to the Alfresco extension directory, i.e.

%ALFRESCO\tomcat\shared\classes.

For client-side components, localized messages are injected as the initialization parameter in the

JavaScript code generated by the corresponding presentation web script. For example, the page.get

presentation web script generates include elements for the client-side page JavaScript component

together with an initialization code for this component. To access a localized message for the current

locale in the client-side component, it is possible to use the construct:

this.msg("<message property key>");

which is a built-in JavaScript function, where <message property key> is the key in the message

bundle for the localized label/message. The locale for the current user is detected according to the

preferred language set in the browser configuration.

Besides of the page components and web scripts, localization property files for data models (types,

properties, enumerated values) and workflow elements (actions, forms, etc.) are stored in the

alfresco/messages directory.

3.2. POLLING PACKAGE

The polling package contains files implementing the Polling manager component. It consists of the

data and presentation web scripts managing the pollings, polling posts and results. The following

scheme, presented in Figure 4, summarizes the internal architecture of the Polling manager and

interactions between the data web scripts, presentation web scripts and pages.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 15 of 25

Figure 4: Inner structure of the polling package.

The web scripts implemented in the polling package, which serve as application interfaces for

provided functionality, are presented in the following Table 4.

Table 4: Data and presentation web scripts for the polling package.

Data web script org/alfresco/slingshot/pollings/polling.post

URL /api/pollings/site/{site}/{container}

Parameters site identifier of the collaboration site

container identifier of the content node container where data will be stored

(pollings)

Request POST JSON object

title String title for new polling

description String description for new polling

pollingItemType String with the reference to the type used for the polling post.

This type defines properties, which corresponds to polling

questions

tags Tags used for classification of new polling

Response Status code with error message in the case of error

Description:

Creates new polling with the specified item type. Item type defines properties, which corresponds to

polling questions.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 16 of 25

Data web script org/alfresco/slingshot/pollings/polling.put

URL /api/pollings/site/{site}/{container}/{path}

Parameters site identifier of the collaboration site

container identifier of the content node container where data will be stored

(pollings)

path path to the modified polling (node reference)

Request PUT JSON object

title String new title for the polling

description String new description for the polling

pollingItemType String with the reference to the type used for the polling post.

This type defines properties, which corresponds to polling

questions

Response Status code with error message in the case of error

Description:

Updates existing polling with the new title, description and specified item type. Item type defines

properties, which corresponds to polling questions.

Data web script org/alfresco/slingshot/pollings/pollings.get

URL /api/pollings/site/{site}/{container}

Parameters site identifier of the collaboration site

container identifier of the content node container where data will be stored

(pollings)

Request GET (empty)

Response JSON response object with the polling entities, each entity has the following

properties:

nodeRef String content node reference of the polling

name String name of the content node

title String title of the polling

description String short description of the polling

pollingItemType String with the reference to the type used for the polling post.

This type defines properties, which corresponds to polling

questions

createdOn String with the creation date

creator String reference to the person object of the creator who created

this polling

author String reference to the author name (i.e. name of the creator)

permissions Object with read/write permissions for the current user invoking

the request

tags Array of tags used for classification of this polling.

Description:

Lists all existing pollings for the specified collaboration site.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 17 of 25

Data web script org/alfresco/slingshot/pollings/results.get

URL /api/pollings/results/site/{site}/{container}

Parameters site identifier of the collaboration site

container identifier of the content node container where data will be

stored (pollings)

path path to the polling (node reference)

Request GET (empty)

Response JSON response object with the polling results

polling String content node reference of the polling

title String title of the polling

pollingItemType String with the reference to the type used for the polling

post. This type defines properties, which corresponds to

polling questions

totalCount Number with the total count of posts send for this polling

fields Array with statistics objects for each field defined for the

item type (i.e. for each polling question)

fields/field String name of the field

fields/{field}:values Object with label for possible answer and count of posts with

this answer

Description:

Lists actual results for the specified polling.

Presentation web script org/alfresco/components/pollings/filters.get

URL /components/pollings/filters

Parameters None

Request GET (empty)

Response HTML Markup

Description:

Filter page component used for filtering of the pollings. Available options for filtering are stored in the

XML configuration file. Default configuration includes All, User and Recent options.

Presentation web script org/alfresco/components/pollings/polingedit.get

URL /components/pollings/pollingedit

Parameters None

Request GET (empty)

Response HTML Markup

Description:

Generates HTML markup for the main region of the polling-edit page. It includes Javascript and CSS

resource files for the PollingEdit client-side component.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 18 of 25

Presentation web script org/alfresco/components/pollings/polling-post-mgr.get

URL /components/pollings/polling-post-mgr

Parameters None

Request GET (empty)

Response HTML Markup

Description:

Customizes HTML markup for the form generated for the polling posts. Default implementation

includes post title to form header. The form is generated by the Alfresco Form Engine, which inspects

definition of properties for the specified post item type and generate input controls for each field

(question).

Presentation web script org/alfresco/components/pollings/pollings.get

URL /components/pollings/pollings.get

Parameters None

Request GET (empty)

Response HTML Markup

Description:

Generates HTML content for the main region of the pollings page, which lists all available pollings.

The list is filtered according to the options specified by the filters component.

Presentation web script org/alfresco/components/pollings/results.get

URL /components/pollings/results.get

Parameters None

Request GET (empty)

Response HTML Markup

Description:

Generates HTML content for the main region of the results page. Controller of this component invokes

/api/pollings/results data service to fetch result statistics for the specified polling. Results are rendered

as the HTML tables.

3.3. CHAT PACKAGE

The chat package contains files implementing the Chat manager component. It consists of the server

managing the communication and exchange of messages and client implemented as the Alfresco

dashlet. The scheme presented in Figure 5 summarizes the internal architecture of the Chat manager

and interactions between the data web scripts, presentation web scripts and chat server servlet.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 19 of 25

Figure 5: Inner structure of the chat package.

The web scripts implemented in the chat package, which serve as application interfaces for provided

functionality, are presented in Table 5.

Table 5: Data and presentation web scripts for the chat package.

Data web script org/alfresco/slingshot/chat/history.post

URL /api/chat/site/{site}/{container}/history

Parameters site identifier of the collaboration site

container identifier of the content node container where data will be stored

(documentLibrary)

Request POST JSON object

description String description used for the generated document

history Array with the chat messages published as the document in

Document Library

name String name of the generated document

occupants Array with the user IDs participating on this chat

subject String with the subject of the chat.

title String title used for the generated document

Response Status code with error message in the case of error

Description:

Publishes history of the chat as the new document stored in the Document Library. The content of the

new document is HTML formatted chat messages.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 20 of 25

Presentation web script org/alfresco/components/dashlets/chat.get

URL /components/dashlet/chats

Parameters None

Request GET (empty)

Response HTML markup

Description:

Generates HTML markup for the chat dashlet. Generate HTML code is combined together with the

regions of other dashlets to form site dashboad page. It includes chat client-side Javascript component

and chat CSS resource file in the page header.

Next in Table 6 and in the subsequent list of communication patterns we present the details about the

message exchange between the Chat client-side component and Chat servlet. The communication

protocol is based on the XMPP protocol for real-time asynchronous communication; however the

messages are encoded in JSON instead of XML.

Table 6: Parameters used in JSON objects during the chat communication.

Parameter (field) Description

rid Request id (type: integer) - used for synchronization of requests

between client and server

sid Session id (type: string)- unique identifier of the chat session

body (in main level of

JSON)

Main structure for encapsulating other parts of the request /

response (could contain more messages from one session)

type Type of some specific message (type: string) - can be

"presence" (for presentation of users), "message" (for chat

messages and subject changes), "iq" (for query on rooms),

"result" (for query result)

from Id of user which initiates some communication or query

(type:string) - id of some user (jid)

to Id of communication element which is part of the

communication (type:string) - id of some user (jid), id of some

room (roomid), or id of site (siteid)

body (inside chat message

type JSON)

Chat message string (type: string)

subject Subject of chat (type:string) - chat room subject (in result of

query) or new subject for change (in change subject request)

stamp Timestamp of message (type:string) – timestamp in standard

format (e.g., "2013-01-01T00:00:00Z"), indicates creation time

for message

items Container for results of query – contains JSON objects

roomid Id of room in query result (type:string)

newmsg Number of new messages (type:integer) – number of new

messages in current particular room (used in result to query)

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 21 of 25

occupants Container for occupants of current room – contains JSON

objects with two fields: jid (type:string) – id of occupant, and

name(type:string) - full name of user

close Flag for closing of room (type:string) – if “close” is available in

presence type of message (we are using “true” as value, but

only presence of the field is enough), the room with roomid in

“to” field is closed

history Flag for sending the history after presence request (type:string)

– if “history” is presented in response (we are using “true” as

value, but only presence of the field is enough), client

application knows that all messages in it (serialized as JSON

objects one by one) are not new messages, but only old

messages from current room

flush Flag that is used in order to flush session queue of current user

(type:string), if “flush” is presented in request (we are using

“true” as value, but only presence of the field is enough) – used

from the client for new open of chat – chat rooms are refreshed

and all old messages in queue are flushed in order to avoid

redundancy

openedRoom Id of currently opened room of chat user (type:string) – roomid

of such room, or NOT_OPENED_ROOM flag.

Patterns for Chat communication (with examples of requests and responses):

1. Connection to server – starting the communication from client with server – requires empty

body from client, returns session ID in “sid” field.

Client request: {"rid": 0, "from": "some_jid"}

Server response: {"rid": 1, "sid":"some_sid "}

2. Empty body request – used for creation of loop, where client is waiting for changes, if nothing

is done, empty response is send. Opened room field is send from the client (for

synchronization of messages in currently opened room on client side – timestamp

synchronization) with the room_id. This is used also for chat user object to setup same flag. If

this field is not presented in request, user has not opened room currently and flag is setup to

“NOT_OPENED_ROOM” flag’s value.

Client request: {"sid":"some_sid","rid": 126, "body":"[]"}

Server response: {"sid":"some_sid","rid": 126, "body":"[]"}

3. Query for rooms – request for rooms of current user – requires type “iq” in main body

container with from field containing user’s id – some_jid (flush is used, if query is at the start

of new chat communication from client application, i.e., the page with chat plugin is re-

opened again), “to” contains site id.

Client request: { "rid": 126, "sid": "some_sid", "body": [{"type": "iq", "from":

"some_jid", "to": "some_siteid", "flush": "true"}] }

Server response: { "rid": 126, "sid": "some_sid", "body": [{ "type": "result", "items": [

{ "roomid": "room1356@site.org", "subject": "room 1156 topic", "newmsg": 3,

"occupants": [{ "jid": "occupant1_jid", "name": "First User" }, { "jid" : "occupant2_jid",

"name": "Second User" }] }] }

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 22 of 25

4. Query room for chat history – presence type of message to particular room with “to” setup for

room id (“from” contains user’s jid), response contains history of room, with “history” flag

added for client. If user is not the occupant of the room, he/she is added to the room and chat

history is send to the client too. All other participants of rooms are informed by the presence

message with “from” field of added user and room id. If user is currently occupant of the room

and “close“ flag is added (i.e., "close": "true") to request, participant is removed from the chat

room. All other participants (their sessions) are informed by presence message with “from”

field of removed user, room id and “close” flag. If user was last participant, room is deleted.

Client request (for standard history): {"sid":"some_sid", "rid": 126, "body": [{"type":

"presence", "from":"some_jid ", "to":"room://1568@site.org"}]}

Server response  JSON messages (history of current room – all chat messages and

subject changes) are serialized in main body part of response, with additional “history” flag

after “sid” and “rid”) for easy identification of client that these JSON objects are history of

chat room.

5. Send message to new chat – used in form “from” “to”, where both field are users (from_jid is

creator and to_jid is some other user contacted by creator) – it is actually the creation of new

chat room, it means that new room object is created, presence message of both users to room

with new roomid is send, and then chat message is send to both users (containing the first

message from creator).

Client request: {"sid":"some_sid", "rid": 126, "body": [{"type": "message", "from":

"from_jid", "to":"to_jid", "body":"start message"}

Server response: server prepares two presence responses and two message responses to

newly created room with room_id, i.e., it can be schematically written as: message

(from_jid, to_jid) -> presence (from_jid, room_id), presence (to_jid, room_id), message

(from_jid, room_id), message (to_jid, room_id)

6. Send message to an existing chat – similar to previous one, but “to” flag contains room_id of

the existing room.

Client request: {"sid":"some_sid", "rid": 126, "body": [{"type": "message", "from":

"from_jid", "to":"room_id", "body":"some message to existing room "}

Server response: server prepares chat message response for every occupant within the

current room, i.e., schematically it is: message (from_jid, room_id) -> [for each occupant

of room] message (from_jid, room_id)

7. Add a new user to existing chat – it is presence type of message with “from” field containing

current user’s jid (from_jid) and “to” field containing room’s id (room_id), for which from_jid

is not the occupant of this chat room. Then it is necessary to update room and send necessary

presence messages to other participants, and also provide the chat history to this new

participant.

Client request: {"sid":"some_sid", "rid": 126, "body": [{"type": "message", "from":

"from_jid", "to":"room_id", "body":"some message to existing room "}

Server response: server prepares presence message responses for every occupant within

the current room and room history to new user (see number 4 for “chat_history” method),

i.e., schematically it is: presence (from_jid, room_id) -> [for each occupant of room]

presence (from_jid, room_id), chat_history (room_id , from_jid)

8. Change chat topic – subject of the topic of the particular room (with room_id) is changed by

the user (with from_jid). If “subject” field is in the message, then its value is used as a new

subject. Then message with subject is send to every occupant of this room, i.e., it is forwarded

to sessions of other participants.

Client request: {"sid":"some_sid", "rid": 126, "body": [{"type": "message", "from":

"from_jid", "to":"room_id", "subject": "New subject of this chat"}] }

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 23 of 25

Server response: same message is forwarded to all participants (but through their sessions,

i.e., with their session parameters)

9. Send site presence message – there is possibility to forward any (optional for client) field

from one client through presence message (currently) to all users on server. It can be used to

inform all clients about availability or status, “to” contains site_id. In example, status field is

added to request. Then to everybody on chat server (with site_id) same message is forwarded.

Client request: {"sid":"some_sid", "rid": 126, "body": [{"type": "presence", "from":

"from_jid", "to":"site_id", "status": "Unavailable "}] }

Server response: same message is forwarded to all participants (but trough their sessions,

i.e., with their session parameters)

3.4. VISUALIZATION PACKAGE

The visualization package contains client-site JavaScript and resource files implementing the

extensions for the data visualization. Besides of the client JavaScript components, it contains servlet,

which implements Google Visualization Data Source API and proxy servlet, which provides secured

access to the content stored in the Alfresco repository. The scheme presented in Figure 6 summarizes

interactions between the OCOPOMO client-site components, Google Visualization framework and

data source and proxy servlets.

Figure 6: Inner structure of the visualization package.

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 24 of 25

The data visualization is integrated with the Wiki component, which is primarily used for the

presentation of the simulation scenarios. It consists of the rendering components and editing

components.

During the rendering, Wiki page component invokes Visualization component, which parses the Wiki

page HTML content and extracts elements with the embedded charts. Elements contain JSON settings

for the Google Visualization API. Google Visualization API fetches the visualized data from the Data

Source servlet, which converts XML files with simulation traces into the Google Visualization data set

encoded in JSON. XML simulation traces are stored in the Alfresco CMS repository, and are loaded

from the repository through Data proxy servlet.

Inserting of charts is integrated into the online HTML editor used to enter HTML content of Wiki

pages and other Alfresco components (Blog, HTML documents stored in the Document Library).

Online editor is implemented using the TinyMCE client-side JavaScript framework, which has its own

extension mechanism. Charts are integrated using the Chart editor plug-in, which configures additional

command button for inserting new charts into the HTML content. Chart button opens the

configuration dialog where the user can specify properties for the visualized data and generated charts.

Chart plug-in code then encodes specified settings and inserts into the edited HTML code special

markup with the embedded chart.

The chart markup has the following format:

<div class="chart">

 <span data="<JSON configuration object>"/>

</div>

JSON configuration object combines settings for data source, chart and additional controls associated

with the chart. Properties for JSON objects are listed below in Table 7.

Table 7: Parameters used in JSON objects for data visualization.

JSON property Description

dataSourceURL String URL of the data source for visualized data. For visualization of

simulation traces, it points to the Data Source servlet.

query String query used to select visualized data (for example select * fetches all

data).

wrapper Object with the chart wrapper. Chart wrapper is the JSON object with the

settings specified for chart, for example type of the chart (LineChar,

BarChart, etc.), title, properties for axis and legend, etc.

controls Array of objects with the control wrappers. Control wrapper is the JSON

object with the settings specified for the controls associated with the chart.

User can use these controls to interact with the chart and customize

visualization (for example additionally filter visualized data).

For more information about the configuration options, please read the documentation about Google

Visualization API on https://developers.google.com/chart/interactive/docs/reference.

https://developers.google.com/chart/interactive/docs/reference

D4.2 SYSTEM AND USER DOCUMENTATION

SD-1: SYSTEM DOCUMENTATION OF

OCOPOMO ALFRESCO TOOLS

v.1.00

16/04/2013

 Page 25 of 25

4. CONCLUSION

This document provides the implementation and technology details of OCOPOMO Alfresco tools, i.e.,

OCOPOMO extensions of the Alfresco framework.

The suite of OCOPOMO Alfresco tools is available for download at:

http://ocopomo.ekf.tuke.sk/trac/ocopomoprj/wiki/Alfresco,

the mirror of installation packages and configuration bundles is available at

http://www.ocopomo.eu/workspace/wp-04-integration-of-components-1/d4.1-integrated-

platform/integrated-ict-toolkit/alfresco

Installation instructions and usage guidelines are provided in the main text of D4.2 deliverable, as well

as in the accompanying documents D4.2.-A User Manual on Collaboration and Scenario Generation

Tools and D4.2-E: User Manual on Simulation Output Visualisation and Traceability Tools.

http://ocopomo.ekf.tuke.sk/trac/ocopomoprj/wiki/Alfresco
http://www.ocopomo.eu/workspace/wp-04-integration-of-components-1/d4.1-integrated-platform/integrated-ict-toolkit/alfresco
http://www.ocopomo.eu/workspace/wp-04-integration-of-components-1/d4.1-integrated-platform/integrated-ict-toolkit/alfresco

