

http://www.ocopomo.eu/

OCOPOMO

Open Collaboration in Policy Modelling

D 2 . 1 P L A T F O R M A R C H I T E C T U R E

A N D F U N C T I O N A L D E S C R I P T I O N O F

C O M P O N E N T S

Document Full Name OCOPOMO_D2.1_v1.0

Date 20/12/2010

Work Package
WP2: Architectural design of IT

solution

Lead Partner TUK

Author

Marian Mach, Melanie Bicking, Peter

Butka, Karol Furdik, Jan Genci, Marta

Kacprzyk, Ruth Meyer, Scott Moss,

Magda Roszczynska, Sabrina Scherer,

Stefan Ventzke, Maria A. Wimmer

Document status v1.0

Dissemination level PUBLIC

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Document Log

Version Date Comment Authors (alphabetical order)

001 04/08/2010

Initial version of SOTA on

integration methods and

technologies

Peter Butka

002 18/08/2010
SOTA on e-participation tools

and technologies
Sabrina Scherer, Stefan Ventzke

003 26/08/2010
SOTA on formal modelling tools

and technologies
Ruth Meyer

004 11/09/2010
Update of SOTA on formal

modelling tools and technologies
Ruth Meyer, Scott Moss

005 13/09/2010 SOTA on scenario generation Melanie Bicking

006 17/09/2010

Update of SOTA on e-

participation tools and

technologies

Sabrina Scherer

007 21/09/2010
Update of SOTA on scenario

generation
Melanie Bicking

008 22/09/2010 Two new user requirements Sabrina Scherer

009 23/09/2010 Architecture design methodology Marian Mach

010 28/09/2010
Update of SOTA on integration

methods and technologies
Peter Butka

011 29/09/2010 SOTA on relevant standards Karol Furdik

012 05/10/2010
Correction of SOTA on scenario

generation
Melanie Bicking

013 08/11/2010

Draft chapter about system

boundaries, update of SOTA on

scenario generation, and section

on overview of tools for the

OCOPOMO policy process

Melanie Bicking

014 08/11/2010
Usability perspective draft,

updated CMS section

Sabrina Scherer, Maria A.

Wimmer

015 10/11/2010

Section on User-oriented process

perspective on OCOPOMO

system

Magda Roszczynska

016 10/11/2010
Update of SOTA on formal

modelling tools and technologies
Scott Moss

017 11/11/2010
Functional view – overall

functional architecture
Peter Butka

018 12/11/2010
Rule manager functional

description
Marian Mach

019 15/11/2010 Update of Functional view Marian Mach

020 15/11/2010

Update of User-oriented process

perspective on OCOPOMO

system

Magda Roszczynska

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

021 15/11/2010
Update of Integration methods

and technologies
Peter Butka

022 16/11/2010
Simulation manager functional

description
Marian Mach

023 16/11/2010

Adding missing references,

update of Usability perspective,

Architecture validation

methodology

Sabrina Scherer

024 16/11/2010
New user requirements based on

use case analysis
Magda Roszczynska

025 18/11/2010
Update chapter about system

boundaries
Melanie Bicking

026 19/11/2010
Annotation manager functional

description
Marian Mach

027 19/11/2010
Interaction perspective and

Mock-ups
Melanie Bicking

028 20/11/2010
Update of Overall functional

architecture
Peter Butka

029 20/11/2010 Information view Karol Furdik

030 22/11/2010
Update of SOTA on relevant

standards
Karol Furdik

031 23/11/2010

Functional descriptions of

Collaboration space, Search,

Process, Notification, User,

Concept and Link managers

Peter Butka

032 23/11/2010

Corrections in System

boundaries, SOTA on scenario

generation and analysis, User

oriented process perspective

Melanie Bicking

033 23/11/2010
Update of Interaction perspective

and Mock-ups
Melanie Bicking, Sabrina Scherer

034 23/11/2010

Comments on Usability

perspective and Architecture

validation

Sabrina Scherer

035 24/11/2010
Discussion forums manager

functional description
Jan Genci

036 26/11/2010

Functional description of Chat,

Calendar, Polling and Rating as

well as Content managers

Peter Butka

037 26/11/2010
Functional description of Version

and Document managers
Jan Genci

038 27/11/2010 Update of System boundaries Karol Furdik

039 29/11/2010
Update of Interaction perspective

and mock-up for registration
Sabrina Scherer

040 29/11/2010 Internationalisation perspective Peter Butka

041 30/11/2010 Update of Usability perspective Sabrina Scherer

042 02/12/2010
Application of perspectives to

relevant views
Peter Butka

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

043 03/12/2010 Update of Architecture validation Peter Butka

044 03/12/2010 Update of simulation use case Magda Roszczynska

045 03/12/2010 Conclusion Peter Butka

046 07/12/2010
Consolidation, corrections and

preparation for internal review
Marian Mach

047 17/12/2010
Revisions based on internal

review

Peter Butka, Karol Furdik, Marta

Kacprzyk, Marian Mach, Magda

Roszczynska

100 20/12/2010 Preparing final version Marian Mach

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

TABLE OF CONTENTS

ABBREVIATIONS AND ACRONYMS ... 14

EXECUTIVE SUMMARY ... 17

1. INTRODUCTION ... 19

1.1. THE PURPOSE OF THE DELIVERABLE ... 19

2. SYSTEM BOUNDARIES ... 21

2.1. SCOPE OF THE SYSTEM .. 21
2.2. CONTEXT OF THE SYSTEM ... 23

3. STATE OF THE ART ANALYSIS AND TECHNOLOGY IDENTIFICATION 28

3.1. INTEGRATION METHODS AND TECHNOLOGIES ... 28

3.1.1. Integration of software applications .. 28

3.1.1.1. Basic types/approaches to integration in general ... 29

3.1.1.2. Integration infrastructure .. 30

3.1.2. Overview of integration technologies ... 31

3.1.2.1. Database access technologies ... 32

3.1.2.2. Message-oriented middleware .. 32

3.1.2.3. Remote procedure calls .. 33

3.1.2.4. Object request brokers .. 33

3.1.2.5. Web services ... 34

3.1.2.6. Application servers ... 36

3.1.2.7. Enterprise service buses ... 37

3.1.2.8. Integration from the view of BPM and workflows ... 38

3.1.2.9. Content and presentation integration – portals and content repositories 41

3.1.2.10. Other types of technologies .. 42

3.1.3. Evaluation of integration technologies .. 43
3.2. E-PARTICIPATION TOOLS AND TECHNOLOGIES .. 45

3.2.1. Description of available alternatives ... 45

3.2.1.1. Content Management Systems ... 47

3.2.1.2. E-participation platforms .. 49

3.2.1.3. Wiki software ... 50

3.2.2. Definition of criteria for selecting tools to incorporate into ICT toolbox 50

3.2.3. Evaluation of tools ... 53
3.3. SCENARIO GENERATION AND ANALYSIS TOOLS AND TECHNOLOGIES .. 56

3.3.1. Description of available alternatives for scenario building and analysis 57

3.3.1.1. ICT support for scenario building .. 57

3.3.1.2. ICT support for scenario analysis ... 59

3.3.2. Definition of criteria for selecting tools to incorporate into ICT toolbox 62

3.3.2.1. Definition of criteria for selecting tools for scenario building 62

3.3.2.2. Definition of criteria for selecting tools for scenario analysis 63

3.3.3. Evaluation of tools ... 65

3.3.3.1. ICT support for scenario building .. 65

3.3.3.2. ICT support for scenario analysis ... 67
3.4. FORMAL MODELLING TOOLS AND TECHNOLOGIES .. 69

3.4.1. Description of available alternatives ... 70

3.4.1.1. General agent-based simulation platforms ... 70

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

3.4.1.2. Rule engines (rule-based systems) ... 72

3.4.2. Definition of criteria for selecting tools to incorporate into ICT toolbox 74

3.4.3. Evaluation of tools ... 74

3.5. TOOLS PRESELECTON AND NEW REQUIREMENTS IDENTIFICATION... 76

3.5.1. Additional requirements .. 76

3.5.2. Tools preselection .. 78

4. ARCHITECTURE DESIGN METHODOLOGY .. 82

5. USER-ORIENTED PROCESS PERSPECTIVE ... 85

5.1. REGISTRATION .. 85
5.2. INITIATION .. 87
5.3. WORKING WITH THE PROJECT ... 89
5.4. COLLABORATION .. 91
5.5. SCENARIO GENERATION .. 95
5.6. SCENARIO ANALYSIS .. 97

5.6.1. Qualitative analysis of documents ... 98

5.6.1.1. Extraction of phrases from natural language descriptions .. 100

5.6.1.2. Issue generation .. 102

5.6.1.3. Generation of relations and relation clusters .. 103

5.6.1.4. Expertise-based relations .. 105

5.6.2. Quantitative Analysis of Documents ... 107

5.6.3. Network Visualisation ... 109
5.7. POLICY MODELLING .. 110
5.8. SIMULATION ... 112
5.9. EVALUATION .. 114
5.10. NEW USER REQUIREMENTS BASED ON USE CASE ANALYSIS .. 116

6. ARCHITECTURAL VIEWS AND PERSPECTIVES .. 119

6.1. FUNCTIONAL VIEW ... 119

6.1.1. Design considerations .. 119

6.1.2. Overall functional architecture .. 120
6.2. INFORMATION VIEW .. 130

6.2.1. Design considerations .. 130

6.2.2. Overall data architecture.. 131

6.2.2.1. Information flow ... 136

6.2.2.2. Data ownership ... 137
6.3. INTERNATIONALISATION PERSPECTIVE ... 139

6.3.1. Relevant user requirements ... 139

6.3.2. Design considerations .. 140

6.3.3. Applications to relevant views .. 140
6.4. INTERACTION PERSPECTIVE .. 140

6.4.1. Design considerations .. 141

6.4.2. Collaborative space ... 141

6.4.2.1. Registration .. 141

6.4.2.2. Dashboard ... 142

6.4.2.3. News entry .. 142

6.4.2.4. Project ... 143

6.4.3. Collaborative scenario generation ... 144

6.4.3.1. Document sharing ... 145

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

6.4.3.2. Discussion forum(s) ... 146

6.4.3.3. Public opinion polling .. 146

6.4.3.4. Showing site colleagues and contacting author(s) .. 147

6.4.4. Application to relevant views .. 147
6.5. USABILITY PERSPECTIVE .. 147

6.5.1. Usability engineering .. 147

6.5.2. Relevant user requirements ... 148

6.5.3. Design considerations .. 148

6.5.4. Usability in OCOPOMO ... 148

6.5.5. Application to relevant views .. 150

7. COMPONENT FUNCTIONAL DESCRIPTION .. 151

7.1. ANNOTATION MANAGER ... 151

7.1.1. Relevant user requirements ... 151

7.1.2. Context of the component ... 151

7.1.3. Supported use cases ... 152

7.1.4. Functionality description ... 153

7.1.5. Component API ... 154

7.2. CALENDAR MANAGER ... 155

7.2.1. Relevant user requirements ... 155

7.2.2. Context of the component ... 155

7.2.3. Supported use cases ... 156

7.2.4. Functionality description ... 156

7.2.5. Component API ... 157
7.3. CHAT MANAGER ... 157

7.3.1. Relevant user requirements ... 157

7.3.2. Context of the component ... 157

7.3.3. Supported use cases ... 158

7.3.4. Functionality description ... 159

7.3.5. Component API ... 159
7.4. COLLABORATION SPACE MANAGER .. 159

7.4.1. Relevant user requirements ... 159

7.4.2. Context of the component ... 160

7.4.3. Supported use cases ... 161

7.4.4. Functionality description ... 162

7.4.5. Component API ... 163
7.5. CONCEPT MANAGER ... 163

7.5.1. Relevant user requirements ... 163

7.5.2. Context of the component ... 164

7.5.3. Supported use cases ... 165

7.5.4. Functionality description ... 166

7.5.5. Component API ... 166
7.6. CONTENT MANAGER ... 167

7.6.1. Relevant user requirements ... 167

7.6.2. Context of the component ... 167

7.6.3. Supported use cases ... 168

7.6.4. Functionality description ... 169

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.6.5. Component API ... 169
7.7. DISCUSSION FORUMS MANAGER ... 170

7.7.1. Relevant user requirements ... 170

7.7.2. Context of the component ... 170

7.7.3. Supported use cases ... 171

7.7.4. Functionality description ... 172

7.7.5. Component API ... 172
7.8. DOCUMENT MANAGER .. 173

7.8.1. Relevant user requirements ... 173

7.8.2. Context of the component ... 173

7.8.3. Supported use cases ... 174

7.8.4. Functionality description ... 175

7.8.5. Component API ... 176
7.9. LINK MANAGER .. 176

7.9.1. Relevant user requirements ... 176

7.9.2. Context of the component ... 177

7.9.3. Supported use cases ... 178

7.9.4. Functionality description ... 179

7.9.5. Component API ... 180
7.10. NOTIFICATION MANAGER ... 180

7.10.1. Relevant user requirements ... 180

7.10.2. Context of the component ... 181

7.10.3. Supported use cases ... 182

7.10.4. Functionality description ... 182

7.10.5. Component API ... 183
7.11. POLLING AND RATING MANAGER .. 183

7.11.1. Relevant user requirements ... 183

7.11.2. Context of the component ... 184

7.11.3. Supported use cases ... 185

7.11.4. Functionality description ... 185

7.11.5. Component API ... 186
7.12. PROCESS MANAGER .. 186

7.12.1. Relevant user requirements ... 186

7.12.2. Context of the component ... 187

7.12.3. Supported use cases ... 188

7.12.4. Functionality description ... 189

7.12.5. Component API ... 190
7.13. RULE MANAGER .. 190

7.13.1. Relevant user requirements ... 190

7.13.2. Context of the component ... 191

7.13.3. Supported use cases ... 192

7.13.4. Functionality description ... 193

7.13.5. Component API ... 194
7.14. SEARCH MANAGER ... 194

7.14.1. Relevant user requirements ... 194

7.14.2. Context of the component ... 195

7.14.3. Supported use cases ... 196

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.14.4. Functionality description ... 196

7.14.5. Component API ... 197
7.15. SIMULATION MANAGER .. 197

7.15.1. Relevant user requirements ... 197

7.15.2. Context of the component ... 199

7.15.3. Supported use cases ... 200

7.15.4. Functionality description ... 201

7.15.5. Component API ... 202
7.16. USER MANAGER .. 202

7.16.1. Relevant user requirements ... 202

7.16.2. Context of the component ... 202

7.16.3. Supported use cases ... 203

7.16.4. Functionality description ... 204

7.16.5. Component API ... 205
7.17. VERSION MANAGER .. 205

7.17.1. Relevant user requirements ... 205

7.17.2. Context of the component ... 205

7.17.3. Supported use cases ... 206

7.17.4. Functionality description ... 207

7.17.5. Component API ... 208

8. ARCHITECTURE VALIDATION ... 209

9. CONCLUSION.. 220

10. REFERENCES .. 223

APPENDIX A: RELEVANT STANDARDS .. 232

A.1. ISO AND ISO/IEC STANDARDS .. 232
A.2. W3C STANDARDS AND RECOMMENDATIONS ... 234
A.3. OASIS STANDARDS ... 236
A.4. OMG STANDARDS ... 237
A.5. OTHER OPEN OR INDUSTRIAL STANDARDS ... 238

APPENDIX B: CMS COMPARISON ... 240

APPENDIX C: USER INTERFACE MOCK-UPS .. 249

APPENDIX D: SPECIFICATION OF DATA OBJECTS BASED ON USER REQUIREMENTS 268

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

LIST OF FIGURES

Figure 1 OCOPOMO‘s approach to implement the project .. 19

Figure 2 OCOPOMO main phases and information artefacts ... 21

Figure 3 OCOPOMO system context diagram .. 23

Figure 4 Interrelations between core architecture concepts .. 83

Figure 5 Use case ―Registration‖ .. 86

Figure 6 Use case ―Initiation of the Project‖ ... 88

Figure 7 Use case ―Working with the Project‖ ... 90

Figure 8 Use case ―Collaboration Space‖ ... 93

Figure 9 Use case ―Scenario Generation‖ ... 95

Figure 10 Use case ―Scenario Analysis - General Overview‖ .. 97

Figure 11 Use case ―Qualitative Data Analysis‖ ... 99

Figure 12 Use case ―Extracting Phrases from Natural Language Descriptions‖ 100

Figure 13 Use case ―Issue Generation‖ ... 102

Figure 14 Use case ―Generation of Relations and Relation Clusters‖ .. 104

Figure 15 Use case ―Inserting Expertise-based Relations‖ ... 106

Figure 16 Use case ―Quantitative Data Analysis‖ ... 108

Figure 17 Use case ―Network Visualisation‖ .. 109

Figure 18 Use case ―Policy Modelling‖ .. 111

Figure 19 Use case ―Simulation‖ .. 113

Figure 20 Use case ―Evaluation of Simulation Results‖ ... 115

Figure 21 Overall architecture of the OCOPOMO platform ... 120

Figure 22 Architecture of information resources and data objects .. 132

Figure 23 Information flow in the OCOPOMO system .. 137

Figure 24 Mock-up of the project dashboard .. 144

Figure 25 Mock-up for editing scenarios .. 145

Figure 26 Context of Annotation Manager ... 152

Figure 27 Use cases supported by Annotation Manager ... 153

Figure 28 Context of Calendar Manager ... 155

Figure 29 Use cases supported by Calendar Manager ... 156

Figure 30 Context of Chat Manager .. 157

Figure 31 Use cases supported by Chat Manager ... 158

Figure 32 Context of Collaboration Space Manager ... 160

Figure 33 Use cases supported by Collaboration Space Manager ... 161

Figure 34 Context of Concept Manager .. 164

Figure 35 Use cases supported by Concept Manager .. 165

Figure 36 Context of Content Manager ... 167

Figure 37 Use cases supported by Content Manager .. 168

Figure 38 Context of Discussion Forums Manager ... 170

Figure 39 Use cases supported by Discussion Forums Manager .. 171

Figure 40 Context of Document Manager ... 174

Figure 41 Use cases supported by Document Manager .. 175

Figure 42 Context of Link Manager .. 177

Figure 43 Use cases supported by Link Manager ... 179

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 44 Context of Notification Manager .. 181

Figure 45 Use cases supported by Notification Manager .. 182

Figure 46 Context of Polling and Rating Manager ... 184

Figure 47 Use cases supported by Polling and Rating Manager ... 185

Figure 48 Context of Process Manager ... 188

Figure 49 Use cases supported by Process Manager ... 189

Figure 50 Context of Rule Manager .. 191

Figure 51 Use cases supported by Rule Manager ... 192

Figure 52 Context of Search Manager .. 195

Figure 53 Use cases supported by Search Manager .. 196

Figure 54 Context of Simulation Manager .. 199

Figure 55 Use cases supported by Simulation Manager ... 200

Figure 56 Context of User Manager .. 203

Figure 57 Use cases supported by User Manager ... 204

Figure 58 Context of Version Manager ... 206

Figure 59 Use cases supported by Version Manager .. 207

Figure 60 Sequence diagram for a simple use case scenario 1. ... 219

Figure 61 Platform components - implementation needs for managers .. 221

Figure 62 Summary of CMS comparison .. 240

Figure 63 Mock-up for Home page ... 249

Figure 64 Mock-up for registration at the system ... 250

Figure 65 Mock-up for password prompt .. 250

Figure 66 Mock-up for user‘s profile .. 251

Figure 67 Mock-up for editing user‘s profile .. 252

Figure 68 Mock-up for the Dashboard .. 253

Figure 69 Mock-up for customising the Dashboard .. 254

Figure 70 Mock-up that shows the OCOPOMO project description .. 255

Figure 71 Mock-up that shows where users start to contribute ... 255

Figure 72 Mock-up for starting with collaborative scenario building by viewing existing ones 256

Figure 73 Mock-up for creating a new scenario .. 256

Figure 74 Mock-up for viewing scenarios... 257

Figure 75 Mock-up for contacting authors of the scenario ... 258

Figure 76 Mock-up for inviting people to join the scenario generation .. 259

Figure 77 Mock-up for getting an overview of all scenario-related discussions structured by topic .. 260

Figure 78 Mock-up for viewing and contributing to a specific scenario-related discussion 260

Figure 79 Upload documents, inserting data about document and setting conditions 262

Figure 80 Mock-up for Frequently Asked Questions (FAQ) .. 263

Figure 81 Mock-up for news entry .. 264

Figure 82 Mock-up for creating a project.. 265

Figure 83 Mock-up for inviting to a project .. 266

Figure 84 Mock-up for projects overview ... 267

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

LIST OF TABLES

Table 1 Description of communication flows between external entities and the system during scenario

generation .. 25

Table 2 Description of communication flows between external entities and the system during scenario

analysis and transformation ... 26

Table 3 Description of communication flows between external entities and the system during

simulation and evaluation and validation .. 27

Table 4 Evaluation of D1.1 user requirements classified as integration-related requirements (all the

requirements in the table default to ‗must-have‘ priority, * indicates ‗nice-to-have‘ priority) 44

Table 5 Different electronic tool categories used in different e-participation areas (‗extensive use‘ in

black, ‗supportive use‘ in grey) (based on [Scherer et al., 2011]) ... 46

Table 6 Basic characteristics of the selected CMSs .. 49

Table 7 Criteria for selecting e-participation tools .. 52

Table 8 CMS support for different functionalities .. 55

Table 9 Criteria for selecting tools for scenario building derived from requirements identified in D1.1

 ... 63

Table 10 Criteria for selecting tools for scenario building that came up while progressing with the

definition of the scenario building process .. 63

Table 11 Criteria for selecting tools for scenario analysis derived from requirements identified in D1.1

 ... 64

Table 12 Criteria for selecting tools for scenario analysis that came up while progressing with the

definition of the scenario analysing process .. 65

Table 13 Evaluation of collaborative writing tools based on key features [Kolabora, 2007] 66

Table 14 Evaluation of computer-assisted qualitative data analysis software based on key features

(retrieved from [Koenig, 2010] and [Surrey, 2010]) ... 68

Table 15 Basic characteristics of the selected ABM platforms ... 72

Table 16 Basic characteristics of the selected rule engines ... 74

Table 17 Criteria for selecting tools for agent-based formal modelling .. 74

Table 18 Description of the ―Registration‖ use case ... 87

Table 19 Description of the ―Initiation of the Project‖ use case ... 89

Table 20 Description of the ―Working with the Project‖ use case .. 91

Table 21 Description of the ―Collaboration Space‖ use case .. 95

Table 22 Description of the ―Scenario Generation‖ use case .. 97

Table 23 Description of the ―Scenario Analysis - General Overview‖ use case 98

Table 24 Description of the ―Qualitative Data Analysis‖ use case ... 100

Table 25 Description of the ―Extracting Phrases from Natural Language Descriptions‖ use case 102

Table 26 Description of the ―Issue Generation‖ use case ... 103

Table 27 Description of the ―Generation of Relations and Relation Clusters‖ use case 105

Table 28 Description of the ―Inserting Expertise-based Relations‖ use case 107

Table 29 Description of the ―Quantitative Data Analysis‖ use case ... 109

Table 30 Description of the ―Network Visualisation‖ use case .. 110

Table 31 Description of the ―Policy Modelling‖ use case... 112

Table 32 Description of the ―Simulation‖ use case ... 114

Table 33 Description of the ―Evaluation of Simulation Results‖ use case.. 116

Table 34 Discussion Forums Manager .. 121

Table 35 Chat Manager ... 122

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Table 36 Calendar Manager .. 122

Table 37 Polling and Rating Manager ... 123

Table 38 Document Manager .. 123

Table 39 Annotation Manager ... 124

Table 40 Rule Manager ... 124

Table 41 Simulation Manager ... 125

Table 42 Search Manager .. 125

Table 43 Collaboration Space Manager .. 126

Table 44 Notification Manager ... 126

Table 45 Process Manager .. 127

Table 46 Concept Manager ... 127

Table 47 Link Manager ... 128

Table 48 User Manager ... 129

Table 49 Content Manager .. 129

Table 50 Version Manager .. 130

Table 51 Data ownership for external actors interacting with the system ... 138

Table 52 Collaboration Space Manager API ... 163

Table 53 Concept Manager API .. 166

Table 54 Content Manager API ... 169

Table 55 Discussion Forums Manager API... 173

Table 56 Document Manager API ... 176

Table 57 Link Manager API .. 180

Table 58 Notification Manager API .. 183

Table 59 Polling and Rating Manager API ... 186

Table 60 Process Manager API ... 190

Table 61 Rule Manager API .. 194

Table 62 Search Manager API .. 197

Table 63 User Manager API .. 205

Table 64 Version Manager API ... 208

Table 65 Requirement coverage .. 216

Table 66 Data analysis of user requirements ... 273

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

ABBREVIATIONS AND ACRONYMS

ABM Agent-Based Modelling

AI Artificial Intelligence

AMQP Advanced Message Queuing Protocol

ANSI American National Standards Institute

API Application Programming Interface

APS Application Server

BPEL Business Process Execution Language

BPM Business Process Management

BPMI Business Process Management Initiative

BPMN Business Process Modelling Notation

BSD Berkeley Software Distribution

CAQDAS Computer-Assisted Qualitative Data Analysis Software

CCD Consistent Conceptual Descriptions

CMIS Content Management Interoperability Services

CMS Content Management System

COM Component Object Model

CORBA Common Object Request Broker Architecture

CSS Cascading Style Sheets

CSV Comma-Separated Values

CWT Collaborative Writing Tools

DCOM Distributed Component Object Model

EAI Enterprise Application Integration

ECMS Enterprise Content Management System

ESB Enterprise Service Bus

EMS Electronic Meeting Systems

FTP File Transfer Protocol

GDSS Group Decision Support Systems

GNU GNU‘s Not Unix

GPL General Public Licence

GSS Group Support Systems

HTML HyperText Markup Language

HTTP(S) HyperText Transfer Protocol (Secure)

ICT Information and Communication Technology

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IIOP Internet Inter-ORB Protocol

IPC Inter Portlet Communication

ISO International Organisation for Standardisation

IT Information Technology

J2EE Java 2 Enterprise Edition

JBI Java Business Integration

JCA J2EE Connector Architecture

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

JCP Java Community Process

JCR Java Content Repository

JDBC Java DataBase Connectivity

JDO Java Data Object

JMS Java Message Service

JMX Java Management Extension

JSR Java Specification Request

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LHS Left-Hand Side

MDA Model Driven Architecture

MEP Message Exchange Pattern

MIME Multipurpose Internet Mail Extensions

MOM Message Oriented Middleware

NTLM NT LAN Manager

OASIS Organization for the Advancement of Structured Information Standards

ODBC Open DataBase Connectivity

OLE Object Linking and Embedding

OMG Object Management Group

ORB Object Request Broker

OWL-S Web Ontology Language for Services

OSS Open Source Software

PDF Portable Document Format

PHP Hypertext Preprocessor

QDA Qualitative Data Analysis

QoS Quality of Service

RBAC Role-Based Access Control

RDF Resource Description Framework

REST REpresentational State Transfer

RHS Right-Hand Side

RMI Remote Method Invocation

RPC Remote Procedure Call

RSS Rich Site Summary / RDF Site Summary / Really Simple Syndication

SAML Security Assertion Markup Language

SDK Software Development Kit

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOTA State Of The Art

SMTP Simple Mail Transfer Protocol

SQL Structured Query Language

STOMP Streaming Text Oriented Message Protocol

TC Technical committee

TPM Transaction Processing Monitor

UDDI Universal Description, Discovery and Integration

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

UML Unified Modelling Language

URL Uniform Resource Locator

W3C World Wide Web Consortium

WAI Web Accessibility Initiative

WCF Windows Communication Foundation

WCMS Web CMS

WfMC Workflow Management Coalition

WS Web Service

WSDL Web Service Description Language

WS-I Web Services Interoperability

WSML Web Service Modelling Language

WSRP Web Service for Remote Portlet

WYSIWYG What You See Is What You Get

XHTML eXtensible HyperText Markup Language

XML eXtensible Markup Language

XML-RPC eXtensible Markup Language Remote Procedure Call

XMPP eXtensible Messaging and Presence Protocol

XSLT Extensible Stylesheet Language for Transformations

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

EXECUTIVE SUMMARY

The deliverable forms one of the pillars on which the implementation work to be accomplished in

subsequent workpackages will be based. It represents a link between needs and expectations elicited in

WP1 [Bicking et al., 2010] and the implementation of a system able to fulfil these needs and to meet

these expectations in WP3. The content of the deliverable can be roughly divided into three parts: (i)

Context and process understanding; (ii) State of the art analysis; and (iii) Architecture development.

Context and process understanding summarises and elaborates partners‘ ideas on processes behind the

approach to policy modelling adopted within the OCOPOMO project as well as on which parts of

these processes are expected to be supported by the prospective OCOPONO ICT toolbox and in which

way. This part consists of two sub-parts:

 System boundaries

 User oriented process perspective

System boundaries outline the scope of the prospective system as a system enabling to deal with three

types of scenarios (initial scenario, evidence-based user generated scenarios, model-based scenarios)

and supporting activities related to production and analysis of scenarios. It is complemented by the

definition of context of the system to be developed which introduces external entities the system is

expected to communicate with as well as data flows between the system and these entities.

User oriented process perspective presents a set of use case diagrams illustrating expected activities of

system users. The following cases have been elaborated: Registration, Initiation of the project,

Working with the project, Collaboration space, Scenario generation, Scenario analysis, Qualitative

data analysis (including several sub-cases), Quantitative data analysis, Network visualisation, Policy

modelling, Simulation, and Evaluation of simulation results. A comparison of the use cases and

currently defined user requirements resulted in the definition of a set of new requirements.

State of the art has focused on the areas which are most relevant for the project: e-participation,

scenario generation, scenario analysis, formal modelling, and integration. For each of these areas

several steps have been performed:

 Alternative identification

 Criteria selection

 Tool evaluation

Since the project is trying to reuse existing software tools and to shift its focus on development of

missing tools only, alternative tools have been identified for each considered area. Subsequently, in

order to select an appropriate tool, if possible, a set of criteria has been defined. Based on these

criteria, the selected alternative tools have been evaluated and evaluation results have been discussed

to support or to reject possible reuses. This approach enabled us to select a few basic tools to base the

OCOPOMO ICT toolkit on their integration and enhancement to provide functionality which is

missing. In addition, a set of collected requirements has been enriched by a few new requirements

inspired by the used selection criteria.

The architecture part outlines ideas of the consortium developer partners how the OCOPOMO ICT

toolbox is going to be built regarding its internal module structure. For the architecture design process

we have used an approach based on the work [Rozanski and Woods, 2005]. This part focuses on the

following basic areas:

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Architectural views and perspectives

 Component functional description

 Architecture validation

Architectural views and perspectives represent the overall architecture description. In order to present

this architectural description, a ―divide and conquer‖ principle has been employed – the description

has been partitioned in order to approach it from different points of view simultaneously. The

architectural views represent particular aspects of the architecture. Based on characteristics of the

prospective system, two views have been employed: functional and information. Both views include

not only the description itself but design considerations presenting decisions on which the design is

based as well. The architectural perspectives address particular quality properties of the architecture.

Three perspectives have been incorporated into the design: internationalisation, interaction and

usability perspectives.

The developed three tier architecture has been broken down into architectural components called

managers. Altogether, seventeen managers have been defined: Annotation Manager, Calendar

Manager, Chat Manager, Collaboration Space Manager, Concept Manager, Content Manager,

Discussion Forums Manager, Document Manager, Link Manager, Notification Manager, Polling and

Rating Manager, Process Manager, Rule Manager, Search Manager, Simulation Manager, User

Manager, and Version Manager. The deliverable provides functional description of these managers.

The information on each of them incorporates relevant user requirements (requirements the manager

responds to), context of the manager (relationships of the manager with the other managers), supported

use cases and functionality description (use cases and functionality exposed by the manager) as well as

a sketch of manager‘s API (if the manager provides services for the other managers).

The last part tries to validate the presented architecture based on user requirements (both requirements

collected in the previous project stage as well as requirements newly defined in this deliverable). The

validation is twofold – requirement coverage is checked and an example is given how a user scenario

can be supported by the collaboration of the designed managers.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

1. INTRODUCTION

Modern approaches to policy modelling consider different disciplines and integrate both global

problems and policy issues by using qualitative and quantitative methodologies, processes and tools in

a framework that takes into consideration social as well as economic trends and conditions. Policy

modelling serves to express possible strategies and to investigate their potential consequences. By

doing so, existing policy analysis, modelling and simulation, as well as visualisation approaches are

studied towards their capacity to contribute to policy formulation with particular focus on computer-

assisted approaches.

Policy modelling is the process of abstraction that includes policy analysis that lays the foundation for

conceptual modelling and formal modelling whereby formal modelling grounds again the simulation.

At the end of the process stands the visualisation of the policy model or the simulation. Hence,

visualisation refers to interface techniques and tools that help to visualise and present relevant

information and issues. At each step throughout the policy modelling process different stakeholders

can be involved and therefore make great and new challenges and opportunities on the visualisation.

Besides, the whole process is influenced by the organisation and the strategy which is behind policy

modelling, as well as the context and environment in which policy modelling takes place.

1.1. THE PURPOSE OF THE DELIVERABLE

The central challenge of the OCOPOMO project is to integrate formal policy modelling, scenario

generation, open collaboration supporting stakeholders‘ engagement in social and economic policy

with ICT solutions.

Figure 1 OCOPOMO‟s approach to implement the project

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

The project structure is depicted in Figure 1 where different colours indicate different project

branches. One branch of the activities within the project (collected into workpackages with blue

background) is to transform ideas on the process of policy modelling, its participants as well as

information artefacts into an envisioned set of software tools – the OCOPOMO ICT toolbox. The

toolbox is expected to support process participants in performing actions the process is composed

from.

This deliverable represents a result of activities performed within workpackage WP2. Therefore, a

description of policy modelling process along with a set of requirements provided by the previous

workpackage WP1 [Bicking et al., 2010] represent a basis on which this deliverable (or its content) is

built. A deep analysis of users‘ requirements was essential to guide subsequent work on extraction of

relevant information and transforming this information into the presented content.

In order to make project activities consistent and enriching each other, all activities were performed in

close collaboration with the ongoing workpackage WP5 [Moss et al. 2010].

In this deliverable, the focus is on the identification of various tools and technologies needed to

support collaborative policy modelling as well as on their proper integration into a unified

OCOPOMO system. Based on our initial understanding of processes behind policy modelling, two

basic activity types were being performed:

 State of the art analysis – software categories relevant to policy modelling as intended within

OCOPOMO have been identified and available tools and technologies have been investigated

and evaluated (Task 2.1);

 Architecture development – proposing the whole system architecture (mainly from the

functional and information views) as well as more detailed functional descriptions of all

proposed architecture components (Tasks 2.2 and 2.3).

The former has resulted in the selection of a few software tools consistent with already collected

requirements. The tools are expected to be reused in order to form a core of the prospective system.

The latter has provided an architecture break-out into a set of basic software components. The main

result presented in this deliverable is the definition of necessary system components and designation

which of them should be developed from scratch and which should be prepared by reusing and/or

modifying selected software tools as well as how these components should be integrated together into

the OCOPOMO ICT toolkit. This information is expected to form input into subsequent workpackage

WP3 focusing on implementation activities.

In addition to work presented within this deliverable, an environment for forthcoming implementation

of the ICT toolbox has been identified and installed (Task 2.4). The developmental framework is

documented on-line and can be found at the OCOPOMO web space
1
. It consists of a suite of tools for

software design, coding and documenting, accompanied with the guidelines for commenting, coding

and naming conventions. In accordance with the proposed technology approach, the implementation

will be based on a specified version of Java IDE and Alfresco SDK. The code versioning, release

control, and collaborative creation of system documentation will be supported by the shared code

repository, bug tracking system, and central documentation environment.

1
 Path Home – Workspace – WP02 – T2.4 Developmental framework, direct link http://fgwimz3.uni-

koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/t2.4-developmental-

framework

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

2. SYSTEM BOUNDARIES

The process of policy modelling, which is specifically addressed by OCOPOMO, is based on narrative

scenarios and related formal policy models that are constructed and modified collaboratively, by

various groups of involved persons that use proper e-participation tools for information exchange and

mutual communication. To design the architecture of a software platform that will support this

approach, the scope, context and boundaries of such system need to be specified as a basis for further

development. In addition, groups of users – actors interacting with the system in particular phases of

policy model creation should be identified together with their roles, competencies and responsibilities.

Results of this initial analysis are presented in the following subsections and are used as a reference

high-level functional description in the rest of this deliverable.

2.1. SCOPE OF THE SYSTEM

To outline the scope of the system to be developed, Figure 2 presents a set of information artefacts the

prospective system has to manipulate with as well as a simplified control flow representing main

actions to be performed by the system
2
.

Figure 2 OCOPOMO main phases and information artefacts

The main artefact the whole project is based on is Scenario. Basically, it is in general a textual

description (narrative, unstructured or structured text) of a perceived view or understanding of a topic

under discussion. A scenario may cover an existing world status, mental models of stakeholders or an

output of future simulations. Some features a scenario can posses:

 It may also depict a future vision, even some fiction.

2
 The overall methodological process described in more details is expected to be presented in an upcoming

project deliverable D5.1 [Moss et al., 2010].

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Alternative scenarios may exist / be developed to describe different aspects and /or

alternatives

 Different authors
3
 may develop different sets of scenarios independently (reflecting e.g.

different mental models in scenario sets of different groups).

 Some of the scenarios may also be conflicting among different author groups.

 Scenarios may be related each to other, for example a scenario can extend and therewith

advance an existing scenario.

As indicated in the figure, it is possible to distinguish three types of scenarios, differing by their

authors and place in the whole process:

 Initial scenario – provided usually by one person or a small group of people in order to

stimulate the process of policy modelling and to set up a point of departure

 Evidence-based user generated scenario – collaboratively developed scenarios by human

authors, communicating their opinions, views and expectations

 Model generated scenario – computed as a result of running a simulation model, produced as a

text-based transcription of a simulation run

In order to produce scenarios, other information artefacts are dealt with as well. Two of them are

simulation models and consistent conceptual descriptions. In addition to them, the process is supported

by other background artefacts as documents and/or human experience.

A Simulation Model is a simplified abstract view of the complex reality thereby representing objects,

phenomena, and processes in a logical way. When creating a simulation model, three elements are

identified: the parts of the system, the interaction between the parts, and the number and nature of

inputs. A model is essentially created for each of these, with crucial aspects considered and minor

aspects ignored. Models can perform two fundamentally different representational functions: a) a

model can represent a selected part of the world (the ‗target system‘) or b) a model can represent a

theory i.e. it interprets rules and axioms of that theory.

The Consistent Conceptual Description (CCD) serves to capture descriptions and perceptions of the

stakeholders in a structured way and code this information, cluster it, condense it and further elaborate

it to reflect a comprehensive consistent conceptual description of a policy case. The content can be e.g.

stored in a database, which allows different extractions and visualisations of content (e.g. social

network, rule-dependency graph, actor hierarchies, relationships, conditions, etc.) also as

understandable visualizations for end users.

CCD plays a role of an intermediary between scenarios and simulation models. Several scenarios can

form input to the CCD of a policy domain and further lead to a formal simulation model. The similar

role is played by the CCD in analysing simulation models in order to update scenarios. The CCD

filters and structures the information, and also guides the elicitation of further information that one

may find useful to increase understanding of the domain in question. The envisioned system to be

developed must allow going back and forth in the process of developing policy models (from

scenarios to simulation models as well as from simulation models to scenarios – in both cases via

CCD); hence the arrows are depicted in both directions. Links between scenarios and CCD as well as

between CCD and simulation models need to be maintained with the aim of ensuring traceability back

and forth.

3
 Differentiation of ‗authors‘ and other involved user types is given in the next section.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

The Figure 2 shows the control flow among the artefacts as well. The process flow among the artefacts

was grouped into four phases (A – D):

 Phase A includes the initiation, where a user prepares a policy case to be discussed and

developed. The user provides initial description of the policy case. This phase results in an

initial scenario.

 Phase B enables interaction between users. Users provide background data/experience (E) and

documents (D). Likewise, evidence-based user-generated scenarios are developed by the

users.

 In phase C, CCD (e.g. topic maps, ontology, qualitative data analysis with knowledge

structures such as social networks, rule-dependency graphs, etc.) are elaborated based on the

evidence-based user generated scenarios and the inputs of background experience and

documents.

 In phase D, the knowledge accumulated within CCD is transformed into simulation models.

Model-based scenarios are generated as output from simulation models and are used as

visualisation of the output to be communicated to users.

The user is to be supported by the prospective ICT toolbox in the different steps of the process, i.e. the

system shall facilitate both understanding and analysis. The system shall support the integration of

different user types at different points in time (i.e. stages) in the OCOPOMO process.

2.2. CONTEXT OF THE SYSTEM

The context diagram of the OCOPOMO system is introduced to present only the central OCOPOMO

process that subsumes everything inside the scope of the OCOPOMO system. The context diagram

depicted in Figure 3 shows how the system will receive and send data flows to the external entities

(external entities represent prospective users of the OCOPOMO system) involved in the process of

collaborative policy development.

Figure 3 OCOPOMO system context diagram

Politician Civil servant Stakeholder

Facilitator

ModellerAnalyst

Administrator

OCOPOMO

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

The external entities correspond to the prospective users of the OCOPOMO system. Some of the

proposed user types were already mentioned before, such as facilitator, stakeholder, etc. A more exact

specification of the envisioned user roles, which correspond to the external entities from the context

diagram, is provided in the following outline.

In general, two main groups of users can be distinguished:

1. Direct participants of the policy development process, who are intentionally involved in policy

creation and have their own preferences, ideas, or proposals of how the newly created policy

should look like. The group of direct process participants includes user roles such as:

 Politician, a decision-maker and/or a person that is responsible for the policy implementation.

Politicians may initiate collaborative policy development in OCOPOMO (directly, or through

civil servants) and may participate on the development of narrative scenarios or policy

models. It is supposed that politicians typically participate on the collaborative policy

development in later phases when some results are already available.

 Civil servant, an assistant of politicians and/or a provider of relevant supporting materials for

other participants of the policy development process. Civil servants, together with politicians,

may provide an initial scenario description, which serves as a starting point for collaborative

development of a new or improved policy.

 Stakeholder, end users such as citizens, NGO‘s and SME‘s, which are willing and able to

participate actively in the construction of narrative scenarios, discussions, information

exchange and other phases of the collaborative policy development.

2. Actors that provide a methodological or technical support for the policy development participants

in the OCOPOMO collaborative environment. This group includes the following user roles:

 Facilitator, a mediator, which methodologically controls the collaboration working space.

Facilitators maintain the collaborative scenario development by providing initial text

descriptions and uploading background documents referring the policy case. They are also

responsible for inviting stakeholders of relevant interest groups, assigning user accounts,

contacting analysts and modellers to provide respective models, controlling iteration cycles of

narrative scenarios and publishing agreed policy descriptions.

 Analyst, an expert that investigates scenarios and other (mostly textual) resources, analyses it

and provides a formal representation of extracted knowledge. Analysts are responsible for the

qualitative analyses of narrative scenarios, which result in the construction of CCD. The

analysis includes an extraction of knowledge from discussions, comments, simulation results,

and various materials that may support the development of scenarios.

 Modeller, an expert that constructs formal policy models according to a given CCD. In other

words, modellers derive the simulation models from an existing CCD, create the simulation

environment and provide the constructed models for participants, which can run customisable

simulations. Modellers are also responsible for maintenance of simulation results and their

provision to analysts for enhancing the respective scenarios accordingly.

 Administrator, responsible for technical maintenance of the system.

The user roles proposed for OCOPOMO differ from each other and, therefore, have different needs of

support in the policy process and through the ICT such as, for example, different knowledge of the

existing policy, principles of policy formation, and technical background.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

The presented external entities (users of the system) communicate with the system in order to

provide/obtain data. In order to describe data flows between external entities and the system more

precisely, the description is broken down to respect three main activity areas the OCOPOMO

approach focuses on – scenario generation, scenario analysis and transformation, and simulation,

evaluation and validation.

Scenario Generation

The scenario generation is one of the main tasks. In OCOPOMO, the starting point of a policy case is

an existing policy. In general, such a policy can be brought in either by a government agency (i.e.

politician, civil servant) or by an interest group. Based on this policy one initial scenario description is

generated. Then, stakeholders can generate further scenarios (scenario alternatives or scenarios of

different groups reflecting e.g. conflicting views).

External entity Direction Description

Politician In existing policy, background documents, initial scenario

description

Out initial scenario description, further scenarios

(evidence-based user scenarios)

Civil servant In existing policy, initial scenario description

Out background documents

Stakeholder In initial scenario description, evidence-based user

scenarios, background documents

Out further scenarios (evidence-based user scenarios),

background documents

Table 1 Description of communication flows between external entities and the system during

scenario generation

Scenario Analysis and Transformation

In order to close the gap between scenarios and simulation models, the process of transforming

scenarios into simulation models may require the following structured information for creating the

simulation model (parts of CCD):

 social networks (i.e. actors and dependencies),

 social processes,

 skill tables,

 conditions (evidences) and consequences (actions),

 if-then rules

Different kinds of scenarios are generated. First, the initial scenario is generated from the natural

language descriptions. The initial scenario lays the foundation for the evidence-based user scenarios

and gives first input for CCD. The evidence-based user scenarios enrich the CCD with further input.

From the CCD the modellers derive simulation models, on which the simulation runs.

The structured information is derived from the master scenario document and the supportive

data/documents, which are unstructured natural language descriptions. In this context, the social

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

network is in particular important for the development of the simulation model as it presents structured

relevant information on the agents and their relationships.

External entity Direction Description

Politician In social network, supportive data/documents

Out the master document, initial scenario, unstructured

scenario alternatives, supportive data/documents

Civil servant In a request for providing supportive data or documents

for scenario alternatives

Out supportive data/documents

Stakeholder In social network, unstructured scenario alternatives, the

master document and supportive data/documents

Out enhanced unstructured scenario alternatives (final

evidence-based user scenarios), the master document

and the supportive data/documents (i.e. unstructured

natural language descriptions)

Facilitator In initial scenario, unstructured scenario alternatives, the

master document and the supportive data/documents

Out social network, requests for creating or enhancing

CCD, rule dependency graphs and/or simulation

models

Analyst In initial scenario, unstructured scenario alternatives

(final evidence-based user scenarios), the master

document and the supportive data/documents (i.e.

unstructured natural language descriptions)

Out CCD, the rule dependency graph

Modeller In the master document and the supportive

data/documents (i.e. unstructured natural language

descriptions), CCD, the rule dependency graph

Out rules and the rule dependency graph, simulation model

Table 2 Description of communication flows between external entities and the system during

scenario analysis and transformation

Simulation and Evaluation and Validation

Computers enable to run simulations based on the simulation model that covers relationships between

the individual actions on the micro-level and the collective effects on the macro level to help

understand interrelation and interdependencies and thereby making the system manageable.

The results received from simulations are visualised in a text format (i.e. a model-based scenario).

Visualisation is needed to demonstrate how a strongly connected operation works and which results

are generated and derivable on one side and to enable interaction in general on the other side.

Visualisation is very important to provide results of a simulation to users and analysts as well as to

receive feedback and interaction with those stakeholders. Describing a specified context‘s concrete

visualisation in detail will mostly include a direct link or at least a mention of the contextual

simulation or the information source the present visualisation provides and works on.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

The model-based scenario is compared with the evidence-based user scenarios for evaluation and

validation.

External entity Direction Description

Analyst In simulation model, simulation results, model-based

scenario, evidence-based user scenarios, CCD, rules

and the rule dependency graph

Out simulation results re-visualised in a text format (i.e.

one model-based scenario), enhanced CCD and/or the

rule dependency graph, evaluation and validation

Facilitator In simulation model, model-based scenario, evidence-

based user scenarios, simulation results re-visualised in

a text format (i.e. one model-based scenario)

Out requests for creating or enhancing scenarios, CCD,

rule dependency graphs and/or simulation models

Modeller In model-based scenario, CCD, evidence-based user

scenarios

Out rules and the rule dependency graph, simulation

model, simulation results, evaluation and validation

Table 3 Description of communication flows between external entities and the system during

simulation and evaluation and validation

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

3. STATE OF THE ART ANALYSIS AND TECHNOLOGY IDENTIFICATION

Current project‘s understanding of the policy modelling process enables to recognise essential building

blocks this process consists of. Based on this, it was possible to identify main types of software

tools/applications able to support users within particular modelling process steps. However, selection

of the most suitable suite of software tools needs to be based on a detailed analysis of existing tools

and technologies in the areas that should be covered by the OCOPOMO ICT toolbox. It namely

includes various e-Participation tools, groupware frameworks, integration platforms, content

management systems, tools for scenario building and analysis, technologies for formal modelling,

multi-agent simulation and visualisation of rule-based policy models. The existing and available tool

representatives of these areas are investigated, described and evaluated in the following subsections.

Since the tools are expected to be integrated into one consistent toolbox, the focus is primarily on open

source tools licences of which enable to reuse these tools for the project‘s objectives.

In addition, a survey of standards (those standards that can be relevant to the approach of policy

modelling adopted in OCOPOMO and thus should be considered during system design) is presented in

Appendix A.

3.1. INTEGRATION METHODS AND TECHNOLOGIES

One important task for development of the OCOPOMO platform is to find a good solution for

integration of all components. Different tools have to be incorporated into platform (in some way),

mostly coming from basic parts of the project's elements like ICT tools for support of scenario

generation process, e-participation tools, tools to support policy modelling, simulation tools. Analysis

of integration methods and technologies for such applications is identified in this chapter, together

with a connection to integration-related user requirements acquired during work on the project‘s D1.1

deliverable (output of WP1) [Bicking et al., 2010].

3.1.1. Integration of software applications

In practice, many systems are not developed from the scratch but (at least partially) are integrated

from existing applications. Research and technological fields related to Enterprise Application

Integration (EAI) or (message-based) middleware integration solutions (also known as Message-

Oriented Middleware - MOM) are those which fulfil all aspects of software and computer systems

architectural principles in order to integrate a set of (enterprise) computer applications. Most of the

well-known approaches follow the paradigm of Service-Oriented Architecture (SOA). Usually, if

system development needs to be done by integration of several components, integration methods

become more crucial, also if we want to produce new software by combining with other, as it is in our

case of the OCOPOMO platform.

Integration is a difficult task in process of system development. In general, an integration project

should answer three basic issues [Juric et al., 2007]: 1) Definition of integration architecture; 2)

Selection of integration infrastructure and technologies; 3) Development and maintenance of

integration documentation. In this part of the deliverable we want to describe mainly the possible

solutions, general integration approaches, methods and overview of technologies in order to have a

solution for the integration of the OCOPOMO platform.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

3.1.1.1. Basic types/approaches to integration in general

There are basically two approaches to integrate several components (applications) - bottom-up and

top-down. In the former case, a problem of communication of components is processed directly

between them and problems are fulfilled from the scratch (where necessary). In case of the top-down

approach the solution is based on logical, high-level integration architecture (without seeing

components in details), where integration methods and processes are solved first. The top-down

approach is preferred in those cases, where we have many components, quite different technologies

and components could change during the development.

Sound integration architecture usually provides several benefits, like reusability, encapsulation,

possible distribution of services, partitioning (build on specific tiers - middle, back-end, front-end),

scalability, enhanced performance, improved reliability, manageability, increased consistency and

flexibility, multiple clients support, independent and rapid development, better composition and

configuration, improved security, etc.

Integration architecture is usually built in several systematic layers. Omitting a layer in such

architecture is a short-term solution, but sometimes can emerge into new problems later. The most

important types of integration are [Juric et al., 2007]:

 Data-level integration - focuses on moving data between applications with the objective of

sharing the same data among different applications. Data-level integration is a relatively

simple approach and often used as a starting solution (e.g. easily understood by developers,

accessing databases is easy, several tools available for data sharing), does not require changes

to the applications. The difficulties of data integration are in complexity of the databases and

in their quantity. It is necessary to understand the data stored in databases and their structure.

Semantics of the data stored in databases is the most difficult part of the data-level integration.

 Application integration - aims at sharing functionality (business logic), not just pure data,

usually achieved through the use of application programming interfaces (APIs). The objective

of application integration is to understand and use APIs for accessing the required

functionalities and to mask the technology differences between different technologies used for

APIs and their access (the latter is achieved using services). Interfaces provide one-way

contracts between the applications. As long as the interfaces stay unchanged, this means that

the contracts have not been changed. Good interfaces are loosely coupled - achieved by

sharing integration-specific data (without behaviour), structuring the data and using open

standard technologies for APIs.

 Business process integration - enables support for business processes where existing solutions

take part in distinctive steps, exposes the functionality as abstractions of business methods

through interfaces, existing applications are remodelled to expose the functionality of the

business process tier and different pieces are glued together, usually by using a business

process modelling and execution language. Advantage of such approaches is flexibility and

adaptability to business process changes. Disadvantage is in business process reengineering

and implementation of several specific technical layers for working at a higher-level of

process abstraction.

 Presentation integration – existing applications are encapsulated and offered through high-

level interfaces. Next logical step is that user gets unified view of the information system in

one presentation layer hiding background applications and different executing of functions.

The presentation integration is a step in which a common user interface (usually a portal) is

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

defined for the business-method-level integrated information system. It is a last piece of multi-

tier integration architecture.

3.1.1.2. Integration infrastructure

The required infrastructure services for integration should be identified and separated into two

different types - basic infrastructure services (useful for the majority of applications, if needed) and

task-specific services (provide functionalities related to a specific task within infrastructure). In the

first case we have four basic layers of services:

 Communication - provides the abstraction for communication details and transparency for

accessing different remote systems and unifies the view on them. It enables the separation of

business logic and the communication services, but allowing communication between them.

Different types of middleware provide different services for communication within this layer

like Database access technologies (for accessing and unifying of database connections),

Message-Oriented Middleware (MOM, asynchronous communication through sending and

receiving messages through a message queue or a message channel), Remote Procedure Call

(RPC, communication services for synchronous, procedural-oriented communication, similar

to object request brokers), or Enterprise Services Bus (ESB, integration broker targeted to

fulfil the objectives of SOA).

 Brokering / Routing - most important for implementing the technical side of integration,

adapts the communication between applications in order to fulfil interoperability of all

applications. Responsibilities of this layer are in gathering required data from multiple sources

(aggregation), preparing the data for processing in different applications (transformation),

gathering results, and combining results (synthesis) with consistent presentation of them. To

achieve this, the layer needs metadata information about particular applications, methods,

messages, and interfaces, and the sequence of operations involved.

 Transformation – provides an engine (usually based on XSLT - Extensible Stylesheet

Language for Transformations
4
) for easy specification of data and schema transformations,

specifying transformation rules, templates. Advantage is that XSLT can be executed

independently to programming language, platform, and other restrictions. These tools are

becoming part of development environments and integration technologies (like ESB).

 Business intelligence - responsible for presenting a high-level interface to access business

information to other applications and to the users using presentation tier, today mostly

personalized portals.

In the second case (task-specific services) we can have several additional layers like:

 Transactions - business operations are carrying out in a transactional manner, any operation

guarantees that the consistency of the system is preserved. It also has to isolate operations

from other operations to a certain degree and guarantee that the outcomes of operations are

written to the persistent storage.

 Security - provides ways to constrain access to the system. Security should include all four

basic layers (also called horizontal), should be able to reuse the existing application security,

4
 XSLT specification - http://www.w3.org/TR/xslt

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

use roles, single user login, and it is related to aspects like communication channel encryption,

authentication, authorization, and auditing.

 Lifecycle - provides ways to control the lifecycle of all applications, with easy replacement. It

is important to minimize the dependencies between applications and specify ways for the

applications to interoperate.

 Naming - unified naming service, usually implemented with a naming and directory product

that enables storing and looking for name-related information.

 Scalability - integration infrastructure should be designed with scalability in mind, with

concurrent access to applications, load balancing, performance and load tests, etc.

 Management - provides ways to manage the integration infrastructure, methods and tools to

manage horizontal and vertical services, with easy configuration (declarative) and version

management, best with a possibility for remote management access.

 Rules - definition of declarative rules for performing communication, brokering, routing, and

business-intelligence tasks, like data formats, data transformations and flows, events,

information processing, and information representation.

In practice integration problems and solutions are often identical or similar. For that reason well-

known and reusable solutions can be classified into common types - integration patterns. Each

integration pattern defines a common integration problem and a sound solution. The most important

integration patterns are Integration broker (integration messenger), Wrapper (integration adapter,

integration connector), Integration mediator, Single-step application integration, Multi-step application

integration, Virtual service (integration facade), Data access object (data exchange pattern), Data

mapping (standard, direct, multi-step), Process automation, etc. Many integration patterns can be

found in various catalogues and books, e.g. [Hohpe and Woolf, 2003] or [Juric et al., 2002].

3.1.2. Overview of integration technologies

Integration infrastructure usually requires more than one technology (mixture of technologies). In this

case interoperability of them is important. Integration can be difficult even for technologies based on

open standards. Technologies used for integration are often called middleware - system services

software that works between the operating system layer and the application layer and provides

services. Middleware connects applications and provides connectivity and interoperability to the

applications, and all forms are helpful in easing the communication between different software

applications.

The selection of middleware affects architecture due to centralisation of software infrastructure and

introduction of abstraction layer, which reduces the complexity. Disadvantage could be in

communication overhead within the system, which can influence some efficiency factors

(performance, scalability, etc.). This should be also considered in selection and architecture design

process.

A lot of technologies are available as middleware products (solutions) for different integration

approaches and methods. Now we will provide short overview of them.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

3.1.2.1. Database access technologies

The simplest way for data-level integration is based on database access technologies, which is

important for accessing and unifying of database connections. It means that we have an abstraction

layer which provides access to the database(s) and enables us to change the actual data without

modifying the application source code. Database access technologies are useful for extracting data

from different databases. Basically, technologies differ in the form of interfaces to databases:

 Function-oriented access – used for accessing functions of database by some driver based on

the unified language. Databases (like open-source solutions MySQL
5
, PostgreSQL

6
, etc.) have

driver connectors with API for querying and updating their tables using SQL queries, where

some standard is used. A well-known standard is ODBC (Open DataBase Connectivity)
7
, in

case of Java platform JDBC (Java DataBase Connectivity, latest in version 4.0)
8
 is used.

 Object-oriented access – used for accessing objects from a database. Communication is done

in more objective way using object-relational mapping. A basic feature is transparency of the

persistent services to the domain model. JDO (Java Data Objects, latest in 2.2)
9
 is a

specification of Java objects persistence. In Microsoft .NET platform ADO.NET (ActiveX

Data Objects for .NET)
10

 fulfils this option. Object-relational mapping could be also

accomplished using some specialised library, which extends function-oriented access with

XML configuration or code annotations (e.g. Java annotations). This can be a very effective

solution for mapping from objects to tables. One well-known solution in Java platform is

Hibernate
11

, which in latest version also supports .NET platform.

3.1.2.2. Message-oriented middleware

Message-oriented middleware (MOM) is a client/server infrastructure that enables and increases

interoperability, flexibility, and portability of applications. It enables communication between

applications over distributed and heterogeneous platforms and reduces complexity due to hiding of

many details. APIs are used for functionality access. One of the basic characteristics is its

asynchronous communication and use of message queues, where messages are able to contain any

type of data and communication continues even if the receiver is temporary not available (wait for

availability). Disadvantage of asynchronous communication is overloading.

MOM products are usually proprietary products and must specifically run on each and every platform

being integrated. Java platform provides ways to achieve relatively high independence from a specific

vendor through Java Messaging Service (JMS)
12

, which is implemented by most vendors. AMQP –

Advanced Message Queuing Protocol [Vinoski, 2006] is an emerging standard that defines the

protocol and formats used in the messaging server and client, Java applications with AMQP are

5
 MySQL – http://mysql.com/

6
 PostgreSQL – http://www.postgresql.org/

7
 ODBC – http://www.openlinksw.com/info/docs/odbcwhp/tableof.htm

8
 JDBC – http://jcp.org/aboutJava/communityprocess/final/jsr221/index.html

9
 JDO – http://jcp.org/aboutJava/communityprocess/mrel/jsr243/index2.html

10
 ADO.NET on MSDN – http://msdn.microsoft.com/en-us/library/aa286484.aspx

11
 Hibernate – http://www.hibernate.org/

12
 JMS – http://www.oracle.com/technetwork/java/index-jsp-142945.html

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

typically written in JMS. There are also other standards available or under development like XMPP

(Extensible Messaging and Presence Protocol)
13

, STOMP (Streaming Text Oriented Message

Protocol)
14

, or RestMS
15

 (similar to AMQP, but based on the RESTful HTTP).

3.1.2.3. Remote procedure calls

Remote procedure call (RPC) is also a client/server infrastructure similar to MOM, but with

synchronous communication (request-reply), which blocks the client until the server fulfils the request.

To achieve remote communication, applications use procedure calls. RPC guards against overloading

a network. RPC increases the flexibility of architecture by allowing a client of an application to

employ a function call to access a server on a remote system. RPC is appropriate for client/server

applications in which the client can issue a request and wait for the server to return a response before

continuing with its own processing, but requires that the recipient is on-line to accept the remote call.

Main idea under RPC is related to Distributed Computing Environment (developed by Open Systems

Foundation). It is a set of integrating services for expanding RPC functionality: it provides directory,

time, security, data-sharing and thread services. Many implementations of RPC protocols come from

ONC/RPC specification
16

. Also many analogical systems for RPC exist, like Java RMI (Remote

Method Invocation)
17

, RPyC (RPC for Python)
18

, .NET Remoting
19

, etc. Interesting solution for RPC

(lately extended into more complex SOAP and web services solutions) is protocol that uses XML to

encode its calls and HTTP as a transport mechanism - XML-RPC
20

.

3.1.2.4. Object request brokers

Object request broker (ORB) is another technology for achieving interoperability of applications that

manages and supports the communication between distributed objects or components. ORBs provide

transparency (independence) on location, programming language, protocol and operating system.

Interfaces are used for communication between objects, where communication is synchronous

(usually) or asynchronous. Location services are used for locating the components within network. In

practice, ORBs provide all the components as local. This is good for development, but can influence

the performance. ORB products have more options for implementing the functionality - moving

(some) functions to the client and server components, provide them as a separate process, and

integrate them into operating system. Main standards/solutions of ORBs are:

 CORBA
21

 - Common Object Request Broker Architecture and compliant standards, which are

using IIOP (Internet Inter-ORB Protocol)
22

 for communication between components. CORBA

13

 XMPP – http://tools.ietf.org/html/rfc3920
14

 STOMP – http://stomp.codehaus.org/
15

 RestMS – http://www.restms.org/
16

 RPC: Remote Procedure Call Protocol Specification Version 2 – http://tools.ietf.org/html/rfc5531
17

 Java RMI – http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
18

 RPyC – http://rpyc.wikidot.com/
19

 .NET Remoting on MSDN – http://msdn.microsoft.com/en-us/library/kwdt6w2k%28VS.71%29.aspx
20

 XML-RPC – http://www.xmlrpc.com/spec
21

 CORBA – http://www.omg.org/spec/CORBA/3.1/
22

 IIOP – http://www.omg.org/technology/documents/formal/corba_iiop.htm

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

standard, originally created by OMG (Object Management Group), is well-known and quite

generic standard for ORB solutions.

 Java RMI (Remote Method Invocation) and RMI-IIOP - provide architecture and

implementations for Java platform. In general, Java context applications are available using

API or Java-specific remote transfer protocol. Java non-context applications are available

using CORBA implementations based on the RMI-IIOP (RMI over IIOP, RMI interfaces

supporting most of the CORBA functionality).

 Microsoft OLE/COM/DCOM/COM+/.NET Remoting/WCF [McLean et al., 2002)] - several

architectures, elements and standards provided within Microsoft platform for distributed

applications and their communication. A series of technologies exists for supporting such

functionality: Object Linking and Embedding (OLE), through Component Object Model

(COM), Distributed COM version (known as ActiveX), COM+, Windows Communication

Foundation (WCF, part of .NET 3.0).

3.1.2.5. Web services

Service oriented architectures (SOAs) are currently the most interesting topic in modern information

systems development. Software systems adhering to the SOA paradigm provide the several main

functionalities achieved by the web services [Papazoglou, 2003]: service publication (service

descriptions are created in a suitable format and are published according to pre-defined standards in

well-known locations), service discovery (uses information retrieval techniques on the published

service descriptions), service selection (filters the results of the discovery process), and service

binding (prepares the main execution of a service).

Web services, definable in general as "any service that is available over the Internet, uses a

standardized XML messaging system, and is not tied to any operating system or programming

language" [Cerami, 2002], are the latest distributed technology and provide the technological

foundation for achieving interoperability between mentioned elements. The components for web

services are standardized. In general three basic aspects are important:

 XML messaging system – most widely used implementations of XML messaging are SOAP

(Simple Object Access Protocol)
23

, XML-RPC (also mentioned in RPC section) and REST –

REpresentational State Transfer [Fielding, 2000]. SOAP is a lightweight protocol intended for

exchanging structured information in a decentralized, distributed environment [Gudgin et al.,

2007]. SOAP basically works by tunnelling XML-formatted messages via Internet protocols

(SMTP, HTTP(S)) and is easy for implementation in existing infrastructures. XML-RPC

simplifies SOAP approach by restriction to HTTP(S), where content is transferred in a POST

message. REST further simplifies the process by usage of intuitive request format directly

based on the HTTP methods of GET, POST, PUT and DELETE. REST becomes very popular

solution with SOA and many technologies start to support this standard

 Self-description of services – important for description of services in terms of available

functions with expected input. Different standards have been created during time which can be

grouped into two categories:

23

 SOAP – http://www.w3.org/TR/soap/

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

o Fundamental web service descriptions – based on WSDL (currently in revision 2.0)
24

.

It is a XML format which divides Web Services on two levels - abstract and concrete.

The abstract one describes message types for exchanging, inputs and outputs,

sequence of messages sent between client and server (MEP – message exchange

pattern), all together can be viewed as interface. The concrete part adds the

information needed to actually execute a service like binding, endpoint and service

elements locations.

o Semantic web service descriptions – if web services are additionally annotated in

semantic manner using specific semantic web languages, like OWL-S (Semantic

markup for Web Services – Ontology Web Language)
25

 or WSML (Web Service

Modelling Language)
26

, it enables web service automatic discovery, invocation,

composition and interoperation. On the other hand, more complicated structure of

system is then designed and implemented, which sometimes overloads the real

systems needs. It is usually needed especially for cases with dynamic workflows of

business operations and incorporation of unknown (in design time) elements, like new

devices and services.

 Discoverability – process of searching for services and retrieving information about them. In

semantic web services different strategies and standards for discovery exist and is usually part

of the semantic-based extensions. In basic case of non-annotated web services UDDI

(Universal Description, Discovery and Integration)
27

 standard is used. Implementers of the

UDDI specifications can either be clients or servers, so called registries, which store various

information about web services - business entity (publisher information), business service

(descriptive information about service), binding template (technical information about

service), tModel (generic container to summarize all technical information on the services).

In addition to several advantages, web services also have a few disadvantages, like performance (not

as good as in distributed architectures that use binary protocols) and (for plain services) inexistence of

infrastructure and quality of service features (such as security, transactions, etc). These issues can be

solved by introducing additional WS* specifications [Juric et al., 2007], like WS-Security (addresses

authentication and message-level security, and enables secure communication with web services),

WS-Coordination (defines a coordination framework for web services and is the foundation for next

specifications), WS-AtomicTransaction and WS-BusinessActivity (transaction specifications, support

for distributed transactions, short duration by atomic, longer running transactions by

BusinessActivity), WS-Reliable Messaging (support for reliable communication and message delivery

between web services over various transport protocols), WS-Addressing (message coordination and

routing), WS-Inspection (dynamic introspection of web service descriptions), WS-Policy (policies

declarations and exchanges between collaborating web services), WS-Eventing (event model for

asynchronous notification of interested parties for web services).

24

 WSDL 2.0 – http://www.w3.org/TR/wsdl20/
25

 OWL-S – http://www.w3.org/Submission/OWL-S/
26

 WSML – http://www.wsmo.org/wsml/wsml-syntax
27

 UDDI specifications – http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

3.1.2.6. Application servers

Application servers (APS) are software platforms, which are able to handle most of the interactions

between clients and server tiers. They are not some very specific middleware technology, but provide

a collection of already mentioned middleware services with management environment for deploying

of business logic components. This environment is called container and (in majority of servers) can

support web services, ORBs, MOM, transaction management, security, load balancing, and resource

management. Due to these reason APS are suitable platform for integration. Many of the professional

APS are able to specifically configure different middleware products.

APS is a combination of software technologies necessary to run applications, so they define the

infrastructure of all applications developed and executed on them. Application servers can implement

some custom platform, but standardized solutions are preferred now. The most important aspects of a

platform are technical issues (software technologies, architecture of applications, portability, security,

etc.), openness (possibility of influencing the development of the platform), interoperability, cost and

maturity.

Java platform is widely used in application servers for support of J2EE functionality. There are several

Java-based commercial products like Oracle WebLogic Server
28

 or WebSphere Application Server
29

with many advanced middleware integration features. On the other hand, Java platform provides also

good open-source solutions. One of the basic examples (with many standards used) is Glassfish

Application Server
30

. Other suitable open-source solutions of application servers for J2EE are Apache

Geronimo
31

, JBoss
32

, Sun GlassFish Enterprise Server (based on GlassFish APS), etc. There are also

(so-called) light-weight application containers (not full application server functionality) – the most

popular is open-source server Apache Tomcat
33

.

Non-Java platforms also provide application servers. Zend platform provides an application server

called Zend Server
34

, which is used for running and managing PHP applications. It is a commercial

product, but has also a version for free distribution (community edition). Open-source application

servers are also available for other platforms, e.g. Base4
35

 (for .NET applications) or Zope
36

 (for

Python). Due to the fact that non-Java APS are not formally specified within JSR (Java Specification

Requests), their interoperability is low (in comparison to J2EE products). These problems are

addressed by specifications of other technologies and standards like Business Application

Programming Interface (BAPI, for SAP-based applications), Web Services Interoperability (WS-I)
37

,

and Java EE Connector Architecture (JCA)
38

.

28

 Oracle WebLogic Server - http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html
29

 WebSphere Application Server – http://www-01.ibm.com/software/webservers/appserv/was/
30

 Glassfish Application Server – https://glassfish.dev.java.net/
31

 Apache Geronimo – http://geronimo.apache.org/
32

 JBoss Application Server – http://labs.jboss.com/jbossas/
33

 Apache Tomcat – http://tomcat.apache.org/
34

 Zend Server – http://www.zend.com/products/server/
35

 Base4 server – http://base4.net/
36

 Zope application server – http://www.zope.org/
37

 WS-I – http://www.ws-i.org/
38

 JCA – http://java.sun.com/j2ee/connector/

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

3.1.2.7. Enterprise service buses

An Enterprise Service Bus (ESB) is a software infrastructure acting as an intermediary layer of

middleware that addresses the extended requirements that usually cannot be fulfilled by web services,

such as integration between web services and other middleware technologies and products, higher

level of dependency, robustness, and security, management, and control of services and their

communication.

Many vendors offer ESB products or products to set up or implement an ESB. They promise to ease

intra- and inter-organisational connectivity, make possible smooth integration of legacy applications,

enable to easily integrate various types of IT assets and so on. In general, ESB is one way to

implement a company-wide or even intra-company SOA by providing a distributed middleware

system for integrating enterprises IT assets. An ESB makes it possible to connect services

implemented in different technologies (such as EJBs, messaging systems, web services, CORBA

components, and legacy applications) in an easy way. An ESB can act as a mediator between different,

often incompatible, protocols and middleware products.

Many of the integration problems (when combined) could not be solved satisfactory using already

existing technologies like CORBA, APS, MOM or EAI approaches. ESB bridges the gap between

traditional EAI solutions and MOM by combining the advantages of both integration approaches and

adding even some more improvements. ESB can be configured rather than coded which allows a clear

separation of application and integration logic. The central element of ESB is a message bus that is

used as the communication medium and message broker between different components or

applications.

ESB can be seen as a step beyond web services for SOA architectural framework, which promises a

solution (as the primary goal of SOA) to align the business world with the IT world in a way that

makes both more effective [High et al., 2005]. Utilisation of the ESB architectural pattern provides

tremendous value when adopting a SOA.

Technically, ESB is a distributed infrastructure for enterprise integration and mainly consists of a set

of services, based and interconnected with a reliable messaging bus sometimes viewed as a standard-

based communication layer that enables services to be used across multiple communication protocols

and data formats, which would include orchestration, adapters, management, and governance

capabilities as part of their definition.

As a communication and integration layer an ESB should provide integration functionality

through transformation, communication and routing. Service requesters and providers interact by

exchanging messages. The core capabilities of an ESB are messaging, message transformation

and message routing [La et al., 2007]. JMS is typically used as the message backbone, but any

other message server implementation could be used (e.g. MSMQ, IBM MQ Series or TIBCO

Rendezvous). Message transformations are provided within ESB for transparent exchange of

messages between different systems, where XML is standard technology (with XSLT, XPath,

XQuery) for implementation. Message routing is a process of routing messages between ESB

service requesters and providers, where ESB basically supports static or adaptive routing.

More advanced functions of ESB could include different things like services and processes

integration, integration adapters based on standards as JCA, management and monitoring, audit,

logging, admin console, increased interoperability, QoS, security services, reliable message

delivery, transaction management, etc.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

ESB products are also designed in a standardized form. Java Business Integration (JBI) is a way

of dealing with this. JBI provides a messaging and web services-based collaboration framework

which provides standard interfaces for integrating third-party components and protocols to plug

in. It defines a pluggable Java container, or execution environment, for integration solutions

providing a messaging infrastructure for those components to interact with. In short, JBI acts as a

container of containers, allowing various service engines and binding components to plug in and

communicate with using a common messaging bus [Ten-Hove, 2006]. The JBI 1.0 (JSR 208)39

and JBI 2.0 (JSR 312)40 are industry-wide standards providing an open integration platform for

Java and business applications. Both projects are being jointly developed through the Java

Community Process (JCP) program by over 22 prominent vendors and individual developers of

Integration and Java 2 Enterprise Edition (J2EE) technology, including Novel, Oracle (Sun), SAP

AG, SeeBeyond, Sonic Software, TIBCO Software, JBoss, IONA and several more [Cover,

2004].

The following components are commonly referred to as the ―core services‖ in JBI [Kinnumpurath,

2005]:

 Component Framework – enables the deployment of different types of components within the

JBI runtime.

 Normalized Message Router – provides a standard mechanism of message interchange

between services.

 Management framework – enables deployment, management and monitoring of components

within the JBI runtime (based on JMX).

Basically these are the components that are defined in the JSR 208 specification and must be

implemented by any JBI implementation. Several open-source JBI-based ESB implementations exist,

like Open ESB
41

, Petals ESB
42

, Apache ServiceMix
43

, FUSE ESB
44

 (enterprise version of ServiceMix,

compliant JSR 208), Bostech ChainBuilder ESB
45

, Mule ESB
46

 (provides interoperability with JBI

containers), JBoss ESB
47

. Currently, Open ESB and Petals ESB are certified by the JBI/JSR 208. In

addition, GlassFish open-source application server comes with the JBI runtime from the Open ESB

project.

3.1.2.8. Integration from the view of BPM and workflows

A business process can be modelled as a workflow. Modelling can be done on different levels of

details depending on the aim of the modelling (such as explanation, teaching and executing).

Basically, a workflow model for support of BPM (Business Process Management) provides a mapping

for key activities, decision point and work distribution. It consists of different modelling primitives,

39

 JBI 1.0 – http://jcp.org/aboutJava/communityprocess/final/jsr208/index.html
40

 JBI 2.0 page on JCR – http://jcp.org/en/jsr/detail?id=312
41

 Open ESB – https://open-esb.dev.java.net/
42

 Petals ESB – http://petals.ow2.org/
43

 Apache Service Mix – http://servicemix.apache.org/home.html
44

 FUSE ESB – http://fusesource.com/products/enterprise-servicemix/
45

 Bostech ChainBuilder ESB – http://sourceforge.net/projects/bostech-cbesb/
46

 Mule ESB – http://www.mulesoft.org/
47

 JBOSS ESB – http://jboss.org/jbossesb

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

most prominent being tasks. An executing instance of a workflow is called a process instance. During

its execution, task instances are being created and executed. Completion of a task instance (as one of

possible events) can initiate (conditionally or unconditionally) instantiation and execution of other

tasks. Control flow between tasks is modelled by control-flow modelling primitives. Task instances

are executed by resources to which they were allocated. This allocation can be modelled by resource

modelling primitives. While being executed, tasks can communicate data elements between one

another which can be modelled by data modelling primitives.

According to [Hollingsworth, 1995], Workflow Reference Model consists of five basic components:

Workflow Enactment Service (creating, managing and executing workflow instances), Process

Definition (tools to analyse, model, describe, and document a business process), Workflow Client

Application (end user interaction), Invoked Application (software entities which are able to carry out

task instances, currently mostly represented in the form of web services), Administration and

Monitoring Tools (status monitoring, extracting metrics information, and management functions,

security issues, etc.).

Development activities in the BPM area have already moved beyond a phase of ad-hoc vendor specific

solutions and are governed by different specifications to produce portable solutions. More

organisations and/or initiatives try to introduce their ideas about BPM, e.g. BPMI (Business Process

Management Initiative), OASIS, OMG, W3C, WfMC (Workflow Management Coalition), etc.

To model business processes, different types of models can be used – the selection of a model type

(with subsequent selection of a particular modelling technique) depends on the aim of modelling.

When using a criterion who is an ultimate consumer of the model, two basic types of models can be

distinguished: models for humans (understanding, communication and decision making) and models

for machines (workflow engines, detailed process definitions that can be executed). A natural way of

building process-oriented systems is to utilise both types, but it is still challenging due to different

expressive power and syntactic restrictions.

In general, there are numerous modelling techniques in both categories for disposal, but each category

has one dominant solution as a de facto standard: BPMN
48

 (Business Process Modelling Notation) for

visual modelling and BPEL
49

 (Business Process Execution Language, short generalized name of WS-

BPEL or BPEL4WS) for executable modelling.

BPMN can be viewed as an equivalent of UML in the area of process modelling. Its primary goal is to

provide a notation that is readily understandable by different types of users, from business analysts to

technical developers responsible for implementing the technology that will perform those processes,

and finally, to business people who will manage and monitor those processes. Thus, BPMN creates a

standardized bridge for the gap between the business process design and process implementation. The

specification defines the notation and semantics of business process diagrams, like visual appearance

of the BPMN graphical elements, semantics of the BPMN elements and possibility to exchange

BPMN diagrams between conformant tools. The intent is to create a standard visual language that all

process modellers can recognise and understand.

History of BPEL started with specification of BPEL4WS (Business Process Execution Language for

Web Services), which combines older languages of consortium members. The proposal was revised,

updated and submitted to OASIS as BPEL4WS V1.1. Technical committee for WS-BPEL then

48

 BPMN – http://www.bpmn.org/
49

 WS-BPEL Technical Committee – http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

prepared new specification for language called WS-BPEL
50

 (Web Services Business Process

Execution Language) V2.0.

WS-BPEL represents a language for specifying business process behaviour. It enables users to

describe business processes in two ways – abstract and executable (both ways share constructs and

have the same expressive power). Executable business processes model actual behaviour of a

participant in a business interaction. Abstract business processes are partially specified processes that

are not intended to be executed. An abstract process (must be explicitly declared as 'abstract') may

hide some of the required concrete operational details to serve a descriptive role - it may be used to

describe observable message exchange behaviour of each of the parties involved, without revealing

their internal implementation.

The language allows describing behaviour of a business process based on interactions between the

process and its partners. The interaction with each partner occurs exclusively through web service

interfaces, and the structure of the relationship at the interface level is encapsulated in what is called a

partnerLink. WS-BPEL also introduces systematic mechanisms for dealing with business exceptions

and processing faults. Moreover, it introduces a mechanism to define how individual or composite

activities within a unit of work are to be compensated in cases where exceptions occur.

The major building blocks of BPEL processes are activities. There are two types: structured activities

can contain other activities and define the business logic between them. Basic activities only perform

their intended purpose. It is possible to model providing and consuming web services, structure the

process logic, define repetitive activities, parallel processing, manipulations with data, and many

additional advanced concepts.

The standardized WS-BPEL 2.0 differs from BPEL4WS 1.1 in several ways, like new activity types,

variable initialization, XPath access to variable data in a simplified manner, XSLT for variable

transformation, clarification of abstract processes, etc. Some of the changes are quite significant and

are a source of incompatibility between the two languages (e.g. syntax changes, modifications of

semantics of existing constructs), so the migration is not trivial.

To overcome exclusion of human tasks in WS-BPEL, BPEL4People specifications were defined, with

latest proposal defined by OASIS Technical Committee for a new WS-BPEL Extension for People

(BPEL4People)
51

 specification. The BPEL4People extension is defined in a way that it is layered on

top of WS-BPEL. It introduces a set of elements which extend the standard WS-BPEL elements and

introduce the modelling of human interactions.

Since BPMN is envisaged as a visualisation of processes which can be made executable using BPEL,

the BPMN standard deals with mapping to BPEL4WS. Suggested mapping is provided for business

process diagrams, business processes, common flow objects, events, activities, gateways, sequence

and exception flows (some objects are not mapped e.g. pools and lanes). As can be seen from the

analysis how those two standards cover workflow patterns, BPMN is able to support more patterns

than BPEL. Intuitively, not all attempts to map a graphical BPMN-based model into a XML-like

BPEL-based model will end successfully. There are some graphical models which cannot be mapped

into executable BPEL. The fundamental reason for this is that BPEL imposes far more syntactic

restrictions than BPMN.

Several works can be found dedicated to translating BPMN models into BPEL process definitions for

subsequent refinement (data manipulation, web service binding, etc.), e.g. [Ouyang, 2006] shows a

50

 WS-BPEL 2.0 – http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
51

 BPEL4PEOPLE – http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=bpel4people

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

technique enabling to translate every model build on a core BPMN subset using several translation

techniques that can be combined together.

3.1.2.9. Content and presentation integration – portals and content repositories

Integration of presentation layer and content are important aspects of integration infrastructure. In

spite of their differences from user point of view, they often have very tight cooperation within

integrated system. Content integration based on content repositories is usually important back-end

solution for content sharing, which is then shown in presentation layer and is mostly based on some

personalised web portal. Portals can be characterized in different words, but there is also an exact

technical solution based on the specification of Java Portlet Specification JSR 168
52

. According to this

specification, ―a portal is a web-based application that – commonly – provides personalization, single-

sign-on, content aggregation from different sources and hosts on the presentation layer of information

systems. Aggregation is the action of integrating content from different sources within a webpage. A

portal may have sophisticated personalization features to provide customized content to users. Portal

pages may have different sets of portlets creating content for different users.‖

Different types of portals can be distinguished. One differentiation is vertical (specialise in detail

about one specific subject) and horizontal portals (broad range of information provided). Another

distinction can be for open and closed portals. Most interesting is to divide portals into:

 Process-oriented business portal – closed user group with access to (automatable) business

processes in a consistent fashion.

 Application-oriented business portal – aggregates selected business applications and their

respective data sets into the user interface of the application.

 Consumer portals – horizontal portals incorporate different sources of information into one

consistent user interface.

From an application developer‘s perspective, portals based on Portlet 1.0 consist of several

independent web applications, called portlets, which are combined together into one uniform user

interface, running under a Java application server within portlet container. The Java portlet

specification JSR 168 defines a standard for individual portlets, thus enabling platform independence

of portlets, aiding usage across different application servers and thereby guaranteeing a high degree of

transportability. The portlet specification JSR 168, released in 2003, defines a set of 12 classes and 14

interfaces, which assure compatibility between a portlet container and the portlet itself. One drawback

of JSR 168 is that individual portlet instances running in one portal cannot communicate with each

other. A first draft of the Portlet API 2.0
53

 which has been released in 2006 and has subsequently been

published as JSR 286 tackles this problem. Its main focus is to enable communication between

individual portlets, the so-called inter-portlet communication (IPC). A single portlet is to be provided

with the possibility ―to send and retrieve events and perform state changes or send further events as a

result of processing an event‖.

Another standard comes from web services world. The main focus of WSRP (Web Services for

Remote Portlets)
54

 is on interactive, presentation-oriented services. Mainly, the WSRP standard

comprises execution interface for WSRP services (using WSDL), rules for interaction with WSRP

52

 Java Portlet Specification 1.0, JSR 168 – http://jcp.org/en/jsr/detail?id=168
53

 Java Portlet Specification 2.0, JSR 268 – http://jcp.org/en/jsr/detail?id=286
54

 WSRP OASIS Technical Committee – http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

services (which cannot be expressed using WSDL) and rules for the structure of data to be created by

WSDL services and sent to other clients. Communication using WSRP involves (as actors) portlet

itself (offering presentation-oriented services), producer (embedding one or more portlets and offering

these as web services) and consumer (making use of services offered by one or more producers).

SOAP is used for communication. WSRP standard in 1.0 also did not specify mechanisms of

communication between individual portlets, but current version called WSRP 2.0 already supports this

feature.

There are several available open-source portal products, like Apache Cocoon
55

, Apache Pluto
56

(reference implementation of JSR168 and JSR268), Jetspeed 2 Enterprise Portal
57

, GateIn
58

(combination of eXo and JBossPortal, from which GateIn evolved), Sun Java System Portal Server –

OpenPortal
59

 (server under Sun GlassFish Web Space Server), Liferay
60

, etc.

The purpose of the Java Content Repository API (JCR) is to ease access of Java applications to digital

content of any kind, where content is stored together with metadata used in CMS. JCR 1.0
61

 was

released in 2005 under JSR 170, followed by JCR 2.0
62

 under JSR 283. The main goal is the

unification of different content management applications. Formerly, every content management

application used to store content in a (frequently proprietary and thus inaccessible to other

applications) content repository. This repository usually offers services necessary to facilitate

document management like, for example, versioning of one document. In order to enable

interoperability between document management systems, JCR introduces a unified API that allows

accessing any compliant repository in a vendor- or implementation-neutral fashion. Apache

Jackrabbit
63

 is well-known open-source JCR implementation, one of the new ones is ModeShape
64

.

Content integration is basic ECMS (Enterprise Content Management Systems) feature. One of the

problems in ECMS field is interoperability of ECMS products. Content Management Interoperability

Services (CMIS)
65

 is a specification for improving interoperability between ECMS products. CMIS

provides interface, which is expected for good interoperability of the ECMS software. One of the

standardization leaders in ECMS system technologies is an open-source solution called Alfresco
66

,

which also has strong collaborative components and portal-based features in its Alfresco Share front-

end interface.

3.1.2.10. Other types of technologies

Another type of integration technologies is called Transaction Processing Monitors (TPM). This

solution is based on the concept of transactions and therefore it is important for mission-critical

55

 Apache Cocoon – http://cocoon.apache.org/
56

 Apache Pluto – http://portals.apache.org/pluto/
57

 Jetspeed 2 – http://portals.apache.org/jetspeed-2/
58

 GateIn portal – http://www.jboss.org/gatein
59

 OpenPortal, Sun Java System Portal Server within Glassfish server – https://portal.dev.java.net/
60

 Liferay – http://www.liferay.com/
61

 JCR 1.0 – http://www.jcp.org/en/jsr/detail?id=170
62

 JCR 2.0 – http://jcp.org/en/jsr/detail?id=283
63

 Apache Jackrabbit – http://jackrabbit.apache.org/
64

 ModeShape – http://www.jboss.org/modeshape
65

 CMIS – http://docs.oasis-open.org/cmis/CMIS/v1.0/os/cmis-spec-v1.0.pdf
66

 Alfresco – http://www.alfresco.com/

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

applications and represents the first generation of application servers. TPM have several tasks: monitor

and coordinate transactions among different resources, providing performance management (load

balancing, pooling) and security services. Due to these facts TPM are predecessors of application

servers. They have been traditionally applied in legacy information systems using procedural models,

RPC, APIs. TPM are proprietary products, which make migration from one product to another very

difficult and not interesting for our purposes.

3.1.3. Evaluation of integration technologies

In this section, evaluation of previously presented integration technologies according to the current

version of requirements from D1.1 [Bicking et al., 2010] and a basic vision of the future integrated

system is described. The purpose of this evaluation is to see which technologies (or groups of

technologies) are suitable to fulfil our needs for the implementation of the prospective OCOPOMO

platform.

In D1.1 there are presented several groups of requirements which are directly related to integration of

our system. Table 4 will provide for each group the following information: Related requirements

(Name with ID) in Reqs column, Type of requirement (F - functional, NF - non-functional) as Type,

and Evaluation comments related to a connection of requirements to some concrete technologies

(whether there are some consequences from a particular selection). The one basic aspect of the

evaluation is that in OCOPOMO we prefer a simple solution, especially where some open-source tools

could be reused together with a subset of their technologies and functionalities. More detailed

information on particular requirements can be found in already mentioned D1.1 deliverable [Bicking

et al., 2010].

Requirements

group

Reqs Ty

pe

Evaluation

User and profile

management

Password reminder (I-F-I1)

Removing profile (I-F-I2)

User registration (I-F-I4)

User profile (I-F-I5)

All personal preferences in one

place (I-36) *

F

F

F

F

F

- usual requirements on web portals

- should be reused within selected

integration solution

Suitable integration technologies:

Content and presentation integration

within portals based on

Portlet/Application Server Containers.

Portlet technology is not mandatory, but

it is probably good solution to stay within

one application server, which will allow

most of the functionality, or it is easy for

extension.

Other useful technologies:

Database access technologies usually

realized within portal solution are used

for profile persistence.

Security Login (I-F-I3)

Privacy (I-NF-6)

Authorization (I-NF-5)

Authentication (I-NF-4)

F

NF

NF

NF

- in our case a simple solution without a

specific security extension module is

expected (reused security model of

selected software tools, etc.)

Suitable integration technologies:

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Integrity (I-NF-10) NF Reuse of security model from selected

integration technology should be enough

for our purposes. According to character

of requirements, again content and

presentation integration within portal

running in application server seems to be

a solid solution with their security model,

which can be shared within application

container.

Graphical user

interface

Multilingual interface (I-35)

Personalise overview (I-F-16)

ICT toolbox functionality

provided through one portal-

based interface (I-1)

NF

F

F

- integration of views from different tools

- personalized dynamic content

Suitable integration technologies:

Mostly related to GUI of web portals and

sharing of content – again content and

presentation integration technologies are

most important.

Efficiency Response time (I-NF-3) NF - hard to have some pre-selection for this

requirement, maybe two aspects are

important:

 - less pieces of software for integration

is probably better

 - integration of most functionality

within one software and only smaller

addition of several others is better

Usability and

accessibility

Usability (I-NF-1)

Look and feel (I-NF-8)

Help and assistance (I-NF-11)

Accessibility (I-NF-2)

Operational (I-NF-7)

F

NF

NF

NF

NF

- in this case we have again quite

presentation-related requirements

Suitable integration technologies:

Similarly to GUI requirements – content

and presentation integration technologies.

Table 4 Evaluation of D1.1 user requirements classified as integration-related requirements (all

the requirements in the table default to „must-have‟ priority, * indicates „nice-to-have‟ priority)

If we want to summarize the previous evaluation, we have to say that (logically according to the fact

that the presented user requirements are more content and presentation related) content and

presentation integration technologies are very important and this layer has to be clearly defined and

prepared for the implementation.

According to current analysis, content and presentation technologies (portlet or non-portlet-based

portals, content integration based on the content management technologies, etc.) combined within

application servers (which supports most of the ―classic‖ integration techniques using standards, like

EJB, SOA, etc.), which have persistence and security solved using some standard database access

technologies and own security models, are fully suitable to give integration of any tools real platform.

So, for the summary, if we will use such combination of integration technologies, we are able to fulfil:

 Data-level integration – using database access technologies, supported by the content

integration (e.g. content repository) for advanced CMS functionality

 Application integration – using application server and its container, any technology which is

supported within container can be helpful for tight integration of specific parts of the platform

(mostly preferred is API sharing)

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Presentation integration – most important layer in this evaluation, should be better to use some

existing portal solution and add some additional parts of other software or implement new

one, where it is needed – content and presentation integration technologies are fundamental

here.

 Business integration – mostly important for previous case as a formal modelling step for

supporting content sharing using specific process and document workflows. We will probably

do not need any other technologies, since the previously mentioned ones usually have

workflow support available these days.

3.2. E-PARTICIPATION TOOLS AND TECHNOLOGIES

Relevant studies have recently evidenced an increasing activity in the field of e-participation in Europe

[Aichholzer and Allhutter, 2009], [Panopoulou et al., 2009], [Scherer et al., 2008], [Tambouris et al.,

2008], [Tambouris et al., 2007]. Due to the breadth of the field, a number of distinct tools are used to

support the different e-participation areas
67

 (see for example [Tambouris et al., 2007], [Thorleifsdottir

and Wimmer, 2006], [Wimmer, 2007]).

3.2.1. Description of available alternatives

Today, some e-participation offerings are implemented in a very simple manner using standard

software available, such as on-line forms or discussion forums or are based on content management

systems (CMS) and include further functionalities. But many of the more comprehensive offerings use

specialized software tools for e-participation. As [Albrecht et al., 2008] describes, Wikipedia is an

example of a technically relatively simple system, which ―shows that e-participation can be carried out

with very good success using simple tools‖ (p. 84). They underline that tools used is less important

than the concept and methodological design of participation offerings, what was already described in

D1.1 [Bicking et al., 2010]. The integration of technologies and suitable methods is a critical success

factor for e-participation [Thorleifsdottir and Wimmer, 2006].

In order to define criteria for selecting appropriate tools for certain e-participation areas, Table 5 can

be used as a first base. On one hand, the table shows which tool categories are used extensively (black

cells) or in a supportive way (grey cells) in different e-participation areas [Scherer et al., 2011]. On the

other hand, the last row of the table visualises, how often which tool is used in 13 e-participation

projects co-funded from the European Commission (based on [Bicking and Wimmer, 2009],

[Charalabidis et al.,2009]). E-participation areas and tools relevant in OCOPOMO [Bicking et al.,

2010] are marked underlined and bold. The e-participation tools named in the table and their usage in

e-participation are elaborated in DEMO-net deliverable 5.1: Report on current ICTs to enable

Participation [Thorleifsdottir and Wimmer, 2006].

67

 E-participation areas are specific and distinct sectors of the democratic process, which are defined by the

context and the scope of electronic participation [Thorleifsdottir and Wimmer, 2006], [Westholm and Wimmer,

2007].

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Tools

Area

C
o

n
te

n
t

m
a

n
a

g
em

en
t

sy
st

em
s

D
is

c
u

ss
io

n

fo
ru

m
s

W
eb

lo
g

s

E
-p

et
it

io
n

sy
st

em
s

E
-v

o
ti

n
g

 s
y

st
em

s

E
-c

o
n

su
lt

a
ti

o
n

E
-s

u
rv

ey
s

&
 e

-

p
o

ll
s

O
n

li
n

e
m

ee
ti

n
g

s

a
n

d
 c

h
a

ts

S
er

io
u

s
g
am

es

C
o

m
m

u
n

it
y

sy
st

em
s

G
IS

 a
n

d
 M

ap

b
as

ed
 t

o
o
ls

C
o

m
b

in
ed

co
ll

a
b

o
ra

ti
o

n

sy
st

em
s

Information

provision

E-consultation

E-petitioning

E-voting

E-surveying &

E-polling

E-lobbying

E-electioneering

E-collaboration

E-empowering

Usage 5 6 3 0 0 0 3 3 1 2 2 2

Table 5 Different electronic tool categories used in different e-participation areas („extensive

use‟ in black, „supportive use‟ in grey) (based on [Scherer et al., 2011])

Resulting from requirements analysis in Work Package 1 [Bicking et al., 2010] and tool categories

proposed in Table 5, relevant software types for the OCOPOMO platform are (descriptions of these

types are available in [Thorleifsdottir and Wimmer, 2006]):

 Content management systems

 Discussion forums

 Weblogs

 E-consultation

 On-line meetings and chats

 Community systems

 E-surveys and e-polls

 Wiki

These functionalities as well as related information need to be on-line available and integrated into the

OCOPOMO platform. Participation facilities must be available for users without the need to install

any software. Information needs to be linked with participation offerings and vice versa.

In order to integrate the functionalities into the OCOPOMO platform, two possible approaches exist.

On one side, different existent participation and collaboration tools could be selected and integrated

into one platform. But in terms of usability, the use of different participation features must be well-

considered to not overload users [Scherer et al., 2009b]. It is of course easier for users, if features

provided have a similar look and feel and are integrated in one environment. Therefore the second

option is to use a web CMS, which already provides most of these tools and integrates them into one

platform. If further functionalities are needed, these can be integrated as a plug-in into the CMS.

Currently, considering project resources, we prefer the latter approach.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

As many content management systems provide these features, they will be analysed in this regard in

the section 3.2.1.1. Particular designed solutions for e-participation are investigated in section 3.2.1.2.

As wiki functionalities have been required in the requirements analysis, wiki software will be

mentioned in section 3.2.1.3.

3.2.1.1. Content Management Systems

The ―Open Source CMS Market Share‖ in 2009 analysed the brand strength and market share of 20

open source web content management systems [cms, 2009]. As such, it provides important

information relevant to selecting a CMS. But as the study states, it should not be read as a final

judgment on the feature quality, stability, or a particular system‘s suitability. Rather it aims at

providing a body of useful data which enable to make a more informed decision about which product

is the best fit. The 20 systems covered in this report have been assessed on variety of metrics related to

Rate of Adoption and Brand Strength. The analysis looked at a broad range of indicators – both direct

and indirect – with the goal of synthesizing trends and patterns. Conclusion of the study: the open

source CMS market is dominated by WordPress, Joomla! and Drupal - the same result was found even

in the last year's study. The fact that all three systems are programmed in PHP is typical for this

market: even if the study takes into account different .NET, Java, and Python systems, PHP is still the

dominant language for open-source CMS. Alfresco is on the ascending branch. On the other hand,

Plone and Xoops recorded overall declining values. Typo3 was ranked in the middle of the field.

CMSs, which are not open source, e.g. the Microsoft Office SharePoint Server, have been not

considered. As a result from this investigation, seven CMS have been selected to analyse them for

their support of different functionalities usable in the OCOPOMO platform:

 Alfresco / Alfresco Share
68

 is a leading Java-based open source enterprise content

management system for documents, web, records, and collaborative content development.

Alfresco has strong support for integration with enterprise technologies (e.g. SharePoint) and

desktop office applications using the open content management standards like CMIS
69

(Content Management Interoperability Services, OASIS standard).

 Drupal
70

 is a free open-source platform and content management system for building

dynamic web sites. It offers a range of features and services including user administration,

publishing workflow, discussion capabilities, news aggregation, metadata functionalities using

controlled vocabularies and XML publishing for content sharing purposes. Equipped with a

powerful blend of features and configurability, Drupal can support a diverse range of web

projects ranging from personal weblogs to large community-driven sites. In general, Drupal

focuses on communities and collaboration.

 Joomla
71

 enables to build Web sites and powerful on-line applications. Many aspects,

including its ease-of-use and extensibility, have made Joomla the most popular Web site

software available.

 Plone
72

 is a ready-to-run content management system that is built on the free Zope application

server. It is free and open source. Plone is easy to set up, flexible, and provides users with a

68

 http://www.alfresco.com
69

 http://docs.oasis-open.org/cmis/CMIS/v1.0/os/cmis-spec-v1.0.html
70

 http://drupal.org
71

 http://www.joomla.org
72

 http://www.plone.org

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

system for managing web content for project groups, communities, web sites, extranets and

intranets. The egosta portal
73

 for participation of stakeholders in e-government projects in

Austria uses Plone [Ventzke et al., 2010]. Plone has been selected here although it has

recorded overall declining values because the OCOPOMO website bases on this CMS.

 TYPO3
74

 is a web content management framework, based on PHP and MySQL. It is a free

open source content management system for enterprise purposes on the web and in intranets.

Typo3 is a very complex content management system. It is a server-side platform-independent

application that can be used with virtually every browser available. TYPO3 is database-driven

and scales easily to deliver web pages and embedded formats in an enterprise content

providing environment. A number of extensions are available in the extension repository,

which only consists of freely available extensions. Typo 3 has been selected because it is a

very comprehensive CMS.

 WordPress
75

 is an open source CMS. It has grown from a pure blogging focus into a full-

fledged content management system. The default system is focused on blogging, but a large

number of open source plugins are available to extend the functionality.

 XOOPS
76

 is an extensible, object oriented, dynamic web content management system written

in PHP. XOOPS can be used as a tool for developing small to large dynamic community

websites, intra company portals, corporate portals, weblogs, etc. A number of modules are

available for the environment, but there is only a small developer group. It has been selected

as XOOPS has been designed to support communities in particular.

Table 6 shows an overview of the seven CMS with additional information about latest version, license,

application server, operating system, database, programming language, interfaces and web server.

 CMS

 Alfresco Drupal Joomla Plone TYPO3 WordPress XOOPS

Latest
version

3.3 6.19 1.5 3.3.5 4.4 3.0.1 2.4.5

License GNU
General
Public
License v2

GNU General
Public
License v2

GNU General
Public License
v2

GNU
General
Public
License v2
or later

GNU
General
Public
License
v2/v3
(upcoming
version 5)
or later

GNU
General
Public
License v2

GNU
General
Public
License
v2

Applica-
tion ser-
ver

J2EE Apache Common
Gateway
Interface

Zope Apache,
ISS

Apache Apache

Opera-
ting sys-
tem

Platform
Independent

Platform
Independent

Platform
Independent

Platform
Indepen-
dent

Unix (e.g.
Linux),
Windows
or Mac

Platform
Indepen-
dent

Platform
Indepen-
dent

73

 http://www.egosta.at
74

 http://www.typo3.org
75

 http://www.wordpress.org
76

 http://www.xoops.org

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Data-

base

MySQL,
PostgreSQL

MySQL,
PostgreSQL

MySQL ZopeDB
(object
oriented)

MySQL,
Oracle,
Postgres

and
others

MySQL MySQL

Progra-

mming
langua-
ge

Java PHP PHP Python PHP PHP PHP

Inter-
faces

Standards-
based JSR-
168 and
REST-based
integration,
XHTML
compliant,
RSS, FTP
support,
WAI
compliant

XML-RPC,
blogapi‘s,
with
additional
modules
XML, CSV,
diverse
HTML
variants,
PDF, XHTML
compliant,
RSS, iCal, ,
WAI
compliance
limited

phpMyAdmin,
MySQL and
SQL
statements,
iCal, RSS, FTP
support

XHTML
compliant,
iCal, RSS,
FTP
support,
WAI
compliant

Interfaces
for all
common
interchan-
ge
formats,
XHTML
compliant,
iCal, RSS,
FTP
support,
WAI
compli-
ance

RSS, iCal, ,
WAI
compliance
limited,
XHTML
compliant

iCal, RSS,
FTP
support

Web
server

Any Apache Apache Apache Apache,
IIS

Apache Apache

Table 6 Basic characteristics of the selected CMSs

3.2.1.2. E-participation platforms

Besides these CMS, which are more or less customisable in order to be usable for e-participation, a

number of specialized software tools exist for e-participation. In this regard, the following three tools

can be mentioned.

Gov2Demos
77

 is an open source, customizable, informative and collaborative e-participation platform

that serves as a proof of concept of how ICT can facilitate communication, knowledge sharing, and

modernization of government services. Gov2Demos is based on Joomla and therefore supports all

Joomla functionalities. Beyond, Gov2Demos is further customised for e-participation [Koulolias et al.,

2006]. Gov2Demos has e.g. been used for the VoicE/VoiceS platform
78

. In the VoiceS project, it has

been extended for a semantic web search engine and a range of other functionalities [Scherer et al.,

2009a].

The Discourse Machine
79

 is a comprehensive software system which supports the management of on-

line discussions. Different tools, including wikis, weblogs and interactive graphics, can be combined.

Since the range of functions and the user interface can be adapted to the respective requirements, the

system can be set up to meet the demands of special target groups [Albrecht et al., 2008]. The

77

 http://www.gov2u.org
78

 http://www.bw-voice.eu (German) or http://www.voice.gva.es (Spanish)
79

 http://www.discourse-machine.de

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Discourse Machine is not open source but there are license models, which allow it to customize and

extend the software.

ICELE
80

 offers a variety of free and low-cost electronic tools, including a community website and

portal solution that is currently being piloted.

These free software tools are not further analysed for the following reasons:

 As Gov2Demos bases on Joomla, in a first step it is sufficient to analyse this system for its

base functionalities. In the case that Joomla is selected as one of the tools which come into

consideration, Gov2Demos could be further tested.

 The Discourse Machine is not further analyzed because it is not open source software.

 ICELE is not further analyzed because the portal solution is currently in a pilot stage only.

3.2.1.3. Wiki software

Wikis are web applications that allow users to add, remove, edit and change content collectively.

Users can change the content of pages and format them with ―a very simple tagging language‖ [oecd,

2007]. Some wikis have strict moderation policies; others are less restricted, dependent upon the user

group. It is generally the case that a clear statement of the rules of engagement makes for a more

effective collaborative experience. The fundamental concept is that a large number of users read and

edit the content, potentially enriching it and correcting mistakes [oecd, 2007].

Wiki software (wiki engine, wiki application) is a type of collaborative software that runs a wiki. The

content, including all current and previous revisions, is usually stored in either a file system or a

database. Some wiki software, e.g. MediaWiki
81

, stores data in a database. Other wiki software, e.g.

PMWiki
82

, stores data in flat files. The former is more scalable.

There are a number of factors, which are important to the decision for wiki software as e.g. costs,

complexity, control, clarity, common technical framework, and features. As in academia, the

fact that most wiki software lacks tools such as instant messaging or link checking [Schwartz et

al., 2004], can be a limitation in their usefulness for e-participation. Therefore, the focus in this

analysis is on CMS, which can also be used in order to provide wiki-like functionalities.

3.2.2. Definition of criteria for selecting tools to incorporate into ICT toolbox

In order to define criteria for evaluating tools to incorporate into ICT toolbox, Table 7 shows and

describes in detail the criteria which are used in the presented state-of-the-art analysis:

80

 http://www.icele.org
81

 http://www.mediawiki.org
82

 http://www.pmwiki.org

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Functionality Description

CMS (T-5)
83

 Key functionalities of a CMS

 Web publishing, retrieval &

browsing

Web publishing means all functionalities for creating and

publishing documents. At least the WCMS has to support the

document types *.doc, *.html, *.jpg and *.gif. It has also to

support functionalities for creating, uploading, editing,

searching and downloading these documents. Additionally,

functionalities as comment and rate content can be supported.

 Multilingualism (I-35) Support of different languages.

 Workflow engine (new

requirement)

Workflow engine to manage e.g. publication and review

workflows.

 Layout/ Templating (T-5) Using templates to manage layout.

 Content/ WYSIWYG (new

requirement)

What you see is what you get editor

 User and rights management (T-

5)

User and rights management is about defining and managing

users and user rights.

 Single sign-on (T-37, I-1) Standards provided to support single sign-on.

 Versioning (T-5) Versioning of content so that it is possible to undo changes.

 Customisable content types (I-14

to show scenarios)

Support of own customisable content types

 Login – with e-mail or user name

and password (I-F-I3)

After the initial registration, members can login each time they

wish to access the site by providing their user name or email

and password.

 Remove profile (I-F-I2) If a registered user wants to delete his/her profile and stop

being a registered member, he/she must/can do this in the

system. If the user is logged-in he or she needs to press the

―remove my account‖ button and confirm this decision

afterwards to remove the profile.

Community systems

 Comment content (T-25) Authorized users (e.g. facilitator in case of the scenario

generation) can decide whether the content in the system can

be commented upon. Commenting should have always the

same style, does not matter what is commented. Users are able

to comment most of the sources within the system.

 Rating content (T-C2) Users are able to rate/vote for interesting news entries.

Rating/Polling is an easy to use functionality to initialize first

participative behaviour and interest with the topics.

 On-line meetings and chats (T-4) This functionality requires the possibility to integrate a chat

program. Further on, there has to be the possibility to hold a

video conference.

 Personalised profiles (I-F-I6) Personalised profiles with information about users.

Discussion (T-1, T-1-1 – T-1-5) Discussion is about providing forum functionalities. Therefore

we have to differentiate between moderated and not moderated

forums.

The discussion forum needs to be customisable in order to

support needed functionalities.

 Moderated and non-moderated

discussions (T-12)

 Visibility of discussions for

certain user roles (T-1-4)

 Multiple instances of a forum (T-

83

 Identifiers in parentheses represent IDs of user requirements, identified in D1.1 [Bicking et al., 2010]

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

1-1)

 Entries should be organised in

threads (T-1-2)

 Possibility to order entries in

chronological order and for

topics (T-1-3)

 Rating of contributions and

contributors (analysis of

discussions based on

a relevance feedback) (T-14, T-

C2)

Mail Possibility to send e-mails with the system.

Calendar (T-28) The calendar should provide different views, like a daily,

weekly and yearly diagram. There should also be an import and

export function. This function will afford the exchange of

appointments with local calendar programs like outlook.

Notification For this, it should be checked, which options the WCMS

affords to reach a user by mail or RSS feed if contents

changed. Another application of those notifications can be the

reminder of important appointments. User can choose how

often he wants to get notifications.

 RSS feed (T-30)

 E-Mail (T-34)

Polling (T-7 – T-11, I-10) To feature this functionality, the WCMS must be able to

integrate a survey which can be answered by click, by a free

answer or by choosing a given answer.
 open forms (authorized access,

open/close polls) (T-7)

 participation of users in polls –

one vote per person (T-8)

 possibility to modify the answers

provided (versioning) (T-9)

 different types of questions &

answers (T-10)

 (graphical) presentation of the

results (T-11)

Blogging Integration of a blog into the CMS.

Wiki (T-39) Wiki should be a collection of websites, which cannot only be

read by the users but also be edited by them. It should also

afford some users to work together on texts and definitions.

Because of this, it is important to check if the WCMS supports

the initialization of Wiki. Another option would be to extend

the CMS with a wiki like functionality that allows creating

scenarios.

Newsletter (T30) Functionality to send newsletters to registered users.

Table 7 Criteria for selecting e-participation tools

Another important criterion is the possible integration into the ICT toolbox. It is also very important to

know how it is possible to re-use any software which can be found as a solid alternative. All

introduced CMS are open source and published under the GPL 2 or higher. Regarding standards used

for interoperability issues (content integration, data exchange, etc.), it needs to be first concluded

which standards can and need to be supported based on the needs of the other parts of the ICT toolbox

(relevant standards are enumerated in Appendix A). Therefore the standards are not analysed further in

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

this part. A base overview of interfaces enabling to access functionality of the tools is given in Table

6.

3.2.3. Evaluation of tools

Evaluating and comparing Web-CMSs is a difficult task as they mostly differ in minor details

[Mintert, 2010]. To give a first overview, Appendix B shows a comparison of CMS. In addition, the

seven chosen CMS are evaluated against the criteria for selecting tools introduced in the previous

section (see Table 8).

Functionality Alfresco Drupal Joomla Plone TYPO3 Word-

Press

XOOPS

CMS

 Publishing,

Retrieval &

Browsing

yes yes yes yes yes,

google-

like search

yes yes

 Multilinguali

sm

yes yes yes yes yes yes yes

 Workflow

engine

yes limited simple

workflow

system

yes limited no,

simple

add-ons

no

 Layout/

Templating

form

authoring

using XML

schemas,

automatic

user

interface

rendering

based on

XForms

standard,

automatic

creation of

multiple

formats for

multiple

channels

Themes

compliant

with

XHTML

standard,

barrier-

free

PHP-

Templates

with

JavaScript/

CSS/ HTML

Skinable

interface.

TypoScrip

t,

TemplaVo

ila

yes Theme-

based

skinable

interface

 Content/

WYSIWYG

yes, HTML

editor

yes,

common

editors

like

tinyMCE

instance,

HTML,

Area,

FCKEdito

r, text

entry via

XML-

RPC

yes,

TinyMCE,

JoomlaFCK,

TMEdit,

JCE,

integrated

image

management

yes,

FCKEdit

or

yes, rich

text editor,

alternative

ly others

Different

add-ons

e.g.

based on

widgEdit

yes,

FCKeditor

 User and

rights

Security

and user

definable,

finely

simple

pulley

definable

, finely

definable,

finely

yes,

simple

yes, enables

administrat

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Functionality Alfresco Drupal Joomla Plone TYPO3 Word-

Press

XOOPS

management manageme

nt with

users,

groups and

roles,

granulated system with

pre-defined

groups and

rights

granulate

d

granulated integrate

d

system,

extendab

le with

add-ons

ors to set

permissions

by group

 Single sign-

on

Single

sign-on

through

NTLM or

LDAP

between

Drupal

systems,

OpenID

Kerberos

Single sign-

on, LDAP

(but only

intern

recommende

d), OpenID

(beta)

LDAP,

OpenID

Single

Sign-On

Framewor

k solution,

OpenID

with add-

in

OpenID OpenID

 Versioning Simply

rollout a

new site

with

automatic

site

versioning

integrated

version

manageme

nt system

simple

version

control app,

versionin

g add-on

for

content

items

automatic

site

versioning

yes with

add-on

yes,

versioning

module for

articles

 Customisable

content types

yes yes limited yes yes yes yes

 Login – with

e-mail or

user name

and password

yes yes yes only

with user

name or

with e-

mail

yes (beta) only

with

user

name or

with e-

mail

solutions

available

 Remove

Profile

yes yes yes yes yes yes yes

Community systems

 Comment

content

yes yes yes yes yes yes yes

 Rating

content

no yes yes (like or

dislike

button)

no no yes no

 On-line

meetings and

chats

yes (beta) yes yes yes yes yes yes

 Personalised

profiles

yes yes yes yes yes yes yes

Discussion

 Moderated

and non-

moderated

discussions

yes

(collaborati

on product)

yes yes yes yes yes

(bbPress

)

yes

 Visibility of

discussions

for certain

user roles

yes

(collaborati

on product)

yes yes yes yes yes

(bbPress

)

yes

 Multiple

instances of a

forum (T-1-

1)

yes yes yes yes yes yes yes

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Functionality Alfresco Drupal Joomla Plone TYPO3 Word-

Press

XOOPS

 Entries

should be

organised in

threads

yes

(collaborati

on product)

yes yes yes yes yes

(bbPress

)

yes

 Possibility to

order entries

in

chronologica

l order and

for topics

no no no no no no no

 Rating of

contributions

and

contributors

no no no no no no no

Mail yes yes yes yes yes yes yes

Calendar yes yes yes yes yes yes yes

Notification

 RSS feed yes yes yes yes yes yes yes

 E-Mail yes yes yes yes yes yes yes

Polling no yes yes yes yes yes yes

 open forms

(authorised

access,

open/close

polls)

no yes yes yes yes yes yes

 participation

of users in

polls – one

vote per

person

no yes yes yes yes yes yes

 possibility to

modify the

answers

provided

(versioning)

no no no yes yes no no

 different

types of

questions &

answers

no yes yes yes yes yes yes

 (graphical)

presentation

of the results

no yes yes yes yes yes yes

Blogging yes yes yes yes yes yes yes

Wiki yes yes yes yes yes yes yes

Newsletter yes yes yes yes yes yes yes

Total

yes 23 29 27 29 28 28 27

yes with

limitations

1 1 3 1 2 2 1

no 9 3 3 3 3 3 5

Table 8 CMS support for different functionalities

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Table 8 shows for each aforementioned CMS, which functionalities are supported either out of the box

or as add-on and which are not supported. The analysis does not make any declarations about effort

needed to implement or integrate plug-ins or add-ons necessary. In addition, in this step, it is not

possible to rate, how good and usable existing implementations are. The colours green, orange and red

give only indications about the availability of features.

The results are based upon desk research (e.g. studying the product websites and other web

references). Most features are provided by add-ins. This makes it difficult to estimate if chosen add-ins

work together smoothly.

Most of analysed functionalities are supported by all analysed CMS; either by integration or as add-on.

As all selected CMS are open source, functionality, which is not provided until now, could be

implemented. On major difference between chosen CMS lays in the support of workflows and

versioning (see also [Mintert, 2010]). As this is not a functionality, which can easily be implemented,

only CMS that provide good support for versioning and workflows should be further considered if the

scenario building functionality should not be implemented with a wiki software tools.

3.3. SCENARIO GENERATION AND ANALYSIS TOOLS AND TECHNOLOGIES

Scenarios have been developed by the RAND Corporation in the early fifties when Herman Kahn

worked out strategically studies on military issues on behalf of the American government [Von

Reibnitz, 1987]. Scenario building received a significant boost and was copied by well-known

organisations such as Shell and Global Business Networks later. The simple 'what if' exercises

performed by national armies turned into fully-fledged future research methods [May, 1996]. In the

1960s and 1970s Gibson [Gibson, 1996] found that a general sense of certainty existed about where

we were going and how to get there. However, the lesson learned is that nobody can just drive to the

future on cruise control. During the twentieth century, a more down-to-earth approach was forced to

look into the future. Consequently, the scenario method became also more mature (e.g. [Johnson et al.,

2002] and [May, 1996]).

The purpose of the scenarios is to stimulate different internally consistent alternatives of either as-is or

to-be situations and its settings within a specific problem scope. Scenario building provides the

opportunity to collect information about a system of a certain problem scope, which is difficult to

access. Scenarios help to identify the framework conditions of the system in order to allow better

handling complexity and related uncertainty, and therewith better predictions for evolution. Based on

the insights from such alternatives, concerted and focused models can be derived that describe the

system and the behaviour of its elements. Scenarios focus on the identification and description of

impact factors as well as cause and effect interdependencies [Straeter, 1988].

Geschka and Hammer classified scenarios on the basis of the scenario building process as follows

[Geschka and Hammer, 1997]:

 Scenarios are building on mathematical models (strict quantitative approach) whereby

different estimations of the future are calculated down. Simulation models such as ―The

Limits to Growth‖ by the Club of Rome are famous representatives of this method.

 Scenarios applied for future studies which are mainly using qualitative approaches for

scenario building.

 Development and deployment of a variety of techniques to structure interrelations and

interdependencies, as well as to make decisions and choices.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

These different scenario approaches have in common a profound analysis of the As-Is situation for

identifying causes and effects which serves as initial step. Then key factors are derived from a weight

list of impact factors for scenario building [Geschka and Hammer, 1997].

Besides, there are still many ways to classify scenario methods (e.g. [May, 1996], [Glenn et al., 1999],

[Van der Duin et al., 2001]) and diverse types of scenarios (e.g. [Van Notten et al., 2003], [Bradfield

et al., 2005]). A very detailed classification of scenario projects was made by Gausemeier

[Gausemeier et al., 1995].

From this follows that scenario building is an inherently flexible approach in terms of design and

construction. It is, therefore, applied in and adopted to many different contexts in both commercial and

government organizations [Sharpe and Van der Heijden, 2007]. Kahn and Weiner [Kahn and Weiner,

1967] explain that scenarios describe hypothetical possible (future) events which might occur within

an environment. Tool support for scenario building and analysis is not easy realizable as there is no

quantitative, logical process behind scenario creation.

However, in the context of the OCOPOMO project tool support is needed in collaborative building

scenarios via on-line means and in analyzing the resulting scenarios.

3.3.1. Description of available alternatives for scenario building and analysis

In OCOPOMO, we aim at collaboratively building scenarios by involving different stakeholder groups

via on-line means (i.e. scenarios building) and then analyzing the resulting scenarios to derive

evidence-based informal rules from narrative descriptions (i.e. scenarios analysis). As scenarios

building and scenarios analysis have to fulfil different purposes, each of them needs specific tool

support. In the following we will, therefore, distinguish between tools available for scenario building

and those available for scenario analysis.

3.3.1.1. ICT support for scenario building

In simple terms it is possible to say that scenarios are just narrative descriptions. Hence, tools to

support scenarios building must predominantly facilitate narrative text production. A lot of tools are

available to support text production, such as MS Word and LaTeX. Furthermore, scenario building in

the context of OCOPOMO project refers also to a collaborative writing process. For scenario building

often ICT tools are deployed that are not particularly developed for this purpose. The process of

scenario-building can be supported by using collaboration software (Group Support Systems – GSS /

Electronic Meeting Systems – EMS / Group Decision Support Systems – GDSS / Collaborative

Writing Tools - CWT).

GSS/EMS/GDSS
84

 combine computing, communication and decision support technologies to

facilitative collaborative work thereby helping to deal with complex, unstructured problems and actors

having incompatible interests, diverging areas of knowledge and multiple backgrounds [Van den

Herik and de Vreede, 2000]. During meetings in which groups share, structure and evaluate ideas GSS

provide support for participants by giving them the opportunity to enter their ideas, reactions or votes

to the system that shares these information with the remaining participants. GSS aim at making group

meetings and group decision-making more effective [Van den Herik and de Vreede, 2000]. The

eGovRTD2020 project used group support software (Ventana GroupSystems) to support the process in

84

 The term GSS is a synonym for EMS and in principle also for GDSS.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

the regional scenario-building workshop in Delft, as well as in the validation workshop in Bled

[Jansen et al., 2006].

Ventana‘s GroupSystems software is the recognized leader in meeting support. Winner of Groupware

'93 Best of Show Award, and named PC Magazine's Editors Choice, GroupSystems provides the

capabilities to capture information and develop consensus as well as make better, faster decisions.

Participants interact whenever and wherever they need to work together - in meetings, between offices

or around the world. Today, hundreds of organizations worldwide maintain a competitive edge using

Ventana's award-winning GroupSystems.
85

 GroupSystems was the first GSS that offers such standard

functionalities as brainstorming, categorizing, discussing, voting, agenda setting and executing, and

recording. The problem with GroupSystems is that it is a LAN-based commercial product, i.e. it is

limited to local meetings and for this reason not applicable for open participatory scenario building as

intended in OCOPOMO.

Some prototypical web-based GSS, which arose from GroupSystems, are ThinkTank
86

, smartSpeed

Connect
87

 or teambits:workshop
88

. These products differ from GSS in terms of their direction and

range of functionality. For instance ThinkTank allows the well-known functionalities from GSS for

professional moderated workshops and enlarge it. Teambits provides digital moderation tools for both

local meetings and meetings via the Internet. On the other hand, smartSpeed is an integrated set of

meeting tools for supporting everyday on-line meetings and workshops, as well as asynchronous

working in virtual teams. Focus of developments is on usability even if specific functionalities cease to

exist. Besides, a general problem of GSS is that the number of participants is often limited, i.e. that it

is not useful to apply these tools for mass and open collaboration as it is intended in OCOPOMO.

GSS are developed to facilitate a group of experts to brainstorm and/or collaborate on a problem. Only

a few GSS such as next.moderator
89

 and teambits:unite
90

 aim at supporting very big groups at big

events. Focus of these systems is on best possible networking many people locally and achieving

common results thereby automatically protocol the results and make the results quickly available.

Because of their ability to deal with large groups of people (i.e. thousands of people) and the fact that

the systems are web-enabled, the tools next.moderator and teambits:unite are worth mentioning and

considering. However, both systems are proprietary tools. For instance next.moderator is offered as a

complete service, which includes the provision and installation of hard- and software as well as

technical support and technical moderation during the event. Customers are facilitated with the

development of workshop designs and if wanted also with care about moderation of events. So, the

application of GSS still focuses on face-to-face meetings (events) and less on mass cooperation and

collaboration through the Internet. This is why we decided to not further consider GSS for evaluation

and selection for scenario building and to not incorporate them into ICT toolbox.

CWT facilitate the editing and reviewing of a text document by multiple individuals either in real-time

or asynchronously. On-line web-based collaborative writing tools such as Zoho Writer
91

, Write-

board
92

, Google Docs & Spreadsheets
93

, NearTime
94

, Socialtext
95

, Quick Doc Review
96

, EditGrid
97

,

85

 http://www.waria.com/databases/gwvendors.htm
86

 http://www.groupsystems.com
87

 http://www.smartspeed.com
88

 http://www.teambits.de/produkte/teambitsworkshop.html
89

 http://www.nextpractice.de/services/nextmoderator/
90

 http://www.teambits.de/produkte/teambitsunite.html
91

 Zoho Writer is a collaborative editor to create documents and share them publicly or privately. The interface is

very intuitive. Any existing document can be imported to work on it. Zoho Writer also enables to export text in

several formats. URL: http://writer.zoho.com/
92

 Writeboard is a web-based editor to help writing on-line documents and collaborating with colleagues.

Documents can be subscribed via RSS to be notified of changes. URL: http://www.writeboard.com/

http://www.writeboard.com/

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

SynchroEdit
98

, Please Review
99

, and Coventi Pages
100

 offer great flexibility. The only requirement is

that users must have a well-functioning Internet connection and – depending on the tool – the

installation of the respective software. Collaborative writing tools can vary a great deal and can range

from the simplicity of wiki system to more advanced systems. Basic features include typical

formatting and editing facilities of a standard word processor with the addition of live chat, live mark-

up and annotation, co-editing, version tracking and more.

3.3.1.2. ICT support for scenario analysis

Tool support that particularly aims at contributing to scenarios often includes both scenario building

and data collection for constructing integrated, long-range scenarios and the respective analysis, e.g.

SCrategy Software [Tietje, 2008], The PoleStar System [OECD, 2008] and the Tool for Exploratory

Landscape Scenario Analyses (TELSA). Although the objective of these tools is the same, they follow

different approaches to best possible fit the specific requirements of their respective problem scopes.

The SCrategy Software focuses not only on scenario technique but also supports strategy maps and

brainstorming. It supports intergroup development and quantitative analysis. With it, it goes beyond a

normal standalone application. SCrategy Software was applied for location promotion, regional and

local development, tourism and economic promotion. For scenario analysis it comprises: a) qualitative

system analysis (impact matrix, interactive system graph, system grid); b) analysis of feedback loops

(from single feedback loops to the most important loops); c) qualitative system simulation; d)

consistency analysis; and e) strategy map.

On the other hand, the Scenario Analysis Tool Suite [Dilek, 2009] implemented several scenario

analysis techniques, as well as an extended approach of combining methods. Therefore, the tool

provides the opportunity to compare different techniques. ART-SCENE [Nam, 2004] includes

automatic generation of scenarios from use cases, alternative courses, and guided scenario

walkthroughs. From this follows that tools to support scenario building and analysis tend to be as

different as the context in which scenarios are applied, such as concerning environmental, social, or

economic policy issues. For instance, tools to support scenario analysis for strategic planning base

often on a mixture of quantitative calculations enhanced by qualitative aspects. They aim at

identifying changes in the environment and the corresponding consequences arising in the long-term

93

 Google Docs & Spreadsheets is a web-based editor to create text documents and spreadsheets. It allows upload

of files and makes changes to them on-line available. URL: http://docs.google.com/
94

 NearTime is an on-line asynchronous collaboration platform that supports collaboration. It integrates blogging,

wikis, calendaring, email, file sharing, RSS output, tags and more. URL: http://www.near-time.net/
95

 Socialtext is a collaboration platform for working on the same page. Users can edit within a simple

WYSIWYG interface thereby previewing while editing and commenting on any page. URL:

http://www.socialtext.com/
96

 Quick Doc Review provides an instant private space for gathering comments on any Word and HTML

document. It allows commenting on each paragraph, directly within the document. URL:

http://www.quicktopic.com/
97

 EditGrid is a service for editing, storing and accessing spreadsheets from any computer with a browser. It

allows the import from and export to common formats. URL: http://www.editgrid.com/
98

 SynchroEdit is a browser-based simultaneous collaborative editor with WYSIWYG interface. It supports a

simple, text-only editor and clearly depicts user's changes in a specific colour. URL:

http://www.synchroedit.com/
99

 Please Review is browser-based collaborative software for reviewing and authoring. URL:

http://www.pleasereview.com/
100

 Coventi Pages is an on-line tool that enables users to share, discuss and revise documents. URL:

http://www.coventi.com

http://docs.google.com/
http://www.near-time.net/
http://www.socialtext.com/
http://www.quicktopic.com/
http://www.synchroedit.com/
http://www.pleasereview.com/
http://www.coventi.com/

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

future. In politics, scenario analysis involves modelling of possible alternative paths of a social,

economic, technological or political environment thereby focusing more on qualitative arguable future

aspects [Brandao, 2006]. The customization of existing tools for scenario analysis to a specific

problem scope using a specific scenario building and analysis approach (e.g. SCrategy applies cross

impact analysis, which is not included in the OCOPOMO scenario analysis approach) is the reason

why these tools are not applicable for OCOPOMO. Hence, they are not further considered.

In the context of the OCOPMO project tools for scenario analysis shall help identifying latent rules

hidden in the narrative descriptions of the scenarios, as well as actors, issues, arguments, tendencies

etc. thereby ensuring that the results are traceable. According to [Bicking and Wimmer, 2010],

Qualitative Data Analysis (QDA) can be a powerful and inherently flexible approach to tackle

different purposes (e.g. future research, system analysis, ethnography, gender research, etc.) across

different scientific disciplines (Information Systems, Sociology, Business Science, Psychology, etc.).

QDA approaches have proven their value-add in manifold cases.

Since about one decade, CAQDAS (Computer-Assisted Qualitative Data Analysis Software) is

developed for supporting the different QDA methods applied in social sciences. These tools might be

applicable to support the OCOPOMO scenario analysis approach as socio-scientific approaches aim at

investigating phenomena of social interaction within societies. Desk research was carried out to select

a small number of CAQDAS for the evaluation. Therefore, a number of existing studies, which

compare different CAQDAS, were investigated (cf. [Kuckartz, 2007], [Mayring, 2007], p. 100-108,

[Creswell and Maietta, 2002], [Alexa and Zuell, 1999], [Barry, 1998], [Weitzman and Miles, 1995]).

Kuckratz ([Kuckartz, 2007], p. 251-257) provides an overview of eight existing CAQDAS

(AQUAD101, ATLAS.ti 5.2102, HYPERRESEARCH103, Kwalitan104, MAXQDA 2007105,

N6106, NVivo107, QDA Miner108, Qualrus109, and the Ethnograph110) and explains general quality

criteria such as kind of analysis to be conducted and number of test persons. Mayring [Mayring, 2007]

101

 AQUAD is a software tool that supports content analysis including coding features, memos and word

analysis. URL: http://www.aquad.de/eng/index.html
102

 ATLAS.ti helps annotating textual, visual and audio data. It facilitates the categorization process of these

types of data and enables the organization of the evolving categories in a (causal) network. URL:

http://www.atlasti.com/
103

 HyperRESEARCH™ enables to code and retrieve, build theories, and conduct analyses of data. Works with

text, graphics, audio, and video sources through an easy-to-use and flexible interface that facilitates any

qualitative analysis technique. URL: http://www.researchware.com/products/hyperresearch.html
104

 Kwalitan supports efficient storage of the data and offers several features to analyse the qualitative material,

like coding, retrieving, categorisation of codes, overviews of codes or words in the text, keywords in context and

writing memos.URL: http://www.kwalitan.nl/engels/index.html
105

 MAXQDA supports all individuals performing qualitative data analysis and helps to systematically evaluate

and interpret texts. It is also a powerful tool for developing theories and testing the theoretical conclusions of the

analysis. URL: http://www.maxqda.com/
106

 N6 is the newest version of NUD*IST. It is designed to both code textual data and to efficiently search and

navigate research material. URL: http://www.qsrinternational.com/products.aspx
107

 NVivo, a derivative, but not necessarily a replacement for NUD*IST, helps to annotate and organize

qualitative data. While it has less coding capabilities than N6, its organizing functions are more elaborate,

allowing to link data in a variety of ways. URL: http://www.qsrinternational.com/products.aspx
108

 QDA Miner is an easy-to-use mixed-model qualitative data analysis software package for coding, annotating,

retrieving and analyzing small and large collections of documents and images. URL:

http://www.provalisresearch.com/QDAMiner/QDAMinerDesc.html
109

 Qualrus is an innovative qualitative data analysis tool for managing unstructured data. It allows for a number

of coding strategies, has sophisticated search possibilities, and can handle a variety of data types, and code audio

and video data effectively. URL: http://www.qualrus.com/
110

 Ethnograph supports hierarchical coding, text annotations, and advanced data search strategies. URL:

http://www.qualisresearch.com/

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

focuses mainly on ATLAS.ti. Although ATLAS.ti is constructed to meet the specific needs of the

theoretical coding according to Glaser and Strauss, Mayring ([Mayring, 2007], p. 100-108) outlines its

applicability for the qualitative content analysis (i.e. ATLAS.ti meets the requirements of both the

Grounded Theory and the Qualitative Content Analysis). According to Mayring [Mayring, 2007] the

most important advantage of ATLAS.ti is its window technique, which displays the protocol and the

summary form at the same time and allows the user to work on them simultaneously.

Creswell and Maietta ([Creswell and Maietta, 2002], p. 164 et.seq.) compare seven existing CAQDAS

systems (ATLAS.ti, HYPERRESEARCH 2.5, Classic N4, N5, NVivo, the Ethnograph 5, and

winMAX) based on the following eight criteria: 1) ease of integration (i.e. logic and layout of the

CAQDAS), 2) kind of data the CAQDAS is able to analyse (e.g. text, audio and video), 3)

opportunities to read and review data, 4) memo writing, 5) categorisation, 6) analysis inventory and

assessment (e.g. search functions), 7) possibility to integrate the analysis of quantitative data, and 8)

merging projects (i.e. support of team work). These criteria focus mainly on software engineering

aspects while those regarding the research method take a secondary role. Literature review of these

comparative studies has shown that experts in the field agree that there is not yet the best candidate

found. However, to get from stakeholder-generated scenarios to the models, we will require software

similar to ATLAS.ti. As we are committed to using and producing open-source software, ATLAS.ti is

not available. However, there are several open source software products available for computer-

assisted qualitative data analysis, such as Coding Analysis Toolkit (CAT)111, Digital Replay System

(DRS)112 and RQDA113, which are evaluated in sub-section 3.3.3.2.

An alternative is ontology editing software such as Protégé114 except that our concern is largely with

social processes and these are not compatible with the ontology approach.

As we aim to raise awareness about the less well-known options, we refer also to tools available in

other fields, which can be helpful for OCOPOMO, too. So, argument visualization tools were

considered to analyze and evaluate arguments based on audio and video material, as well as written

text (such as on-line forums). The software tools shall facilitate structuring and visualization of

arguments in various illustration formats, such as graphs or tables. Today, several argument

visualization tools exist [Kirschner et al., 2003], for instance ArguMed [Verheij, 2003], Araucaria

[Reed and Rowe, 2004], ATHENA [Bertil and Magnusson, 2002], Convince Me [Schank and Ranney,

1995], Compendium [Selvin et al., 2001], Belvedere [Suthers et al., 1995], ProSupport [Prakken and

Vreeswijk, 2002], and Reason!Able [Van Gelder, 2002]. These tools produce diagrams using boxes

and arrows to link the boxes and to indicate their direction. The boxes represent premises and

conclusions, which are formulated as statements.

In the context of OCOPOMO, scenarios are collaboratively developed, i.e. stakeholders are able to

discuss on the scenarios, e.g. in discussion forums. This can be seen as a discourse. Some

methodological approaches to Discourse Analysis are relatively close to what is needed in

OCOPOMO. Within linguistics, analysts ask how written, oral and visual texts are used in specific

contexts to make meanings. In particular the socio-political approaches are close to what is intended

by OCOPOMO scenario analysis as these approaches focus on the production of knowledge. Political

discourse analysis methodological approaches are worth consideration as this analysis focus on the

111

 CAT is a service of the Qualitative Data Analysis Program. In 2008 CAT won the "Best Research Software"

award from the organized section on Information Technology & Politics in the American Political Science

Association. URL: http://cat.ucsur.pitt.edu/
112

 DRS enables the synchronisation, replay, and analysis of audio and video recordings. URL:

http://web.mac.com/andy.crabtree/NCeSS_Digital_Records_Node/DReSS.html
113

 RDQA is an R package for Qualitative Data Analysis. URL: http://rqda.r-forge.r-project.org/
114

 Protégé is a free, open source ontology editor and knowledge-base framework. URL:

http://protege.stanford.edu/

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

analysis of informal exchange of reasoned views as to which of several alternative courses of action

should be taken to solve a societal problem. As this can be important for policy modelling and the

derivation of formal rules, this category of tools is mentioned. However, the focus of discourse

analysis tools is too much on linguistic issues thereby neglecting that our concern is largely with social

processes and these are not compatible with the linguistic approach.

Argument visualisation and discourse analysis tools can help to structure and analyse textual

arguments. These tools can be used to transform arbitrary argument structures into both graphical

and/or text-based summaries. These tools can be used for drawing abstract argumentation frameworks,

which are simply debate graphs. In general these tools are not applicable for scenario analysis as they

are designed for a different purpose based on different methodological and disciplinary context. These

tools are too much customized for discourse analysis and, thus, too inflexible for an in-depth scenario

analysis that detects the underlying social processes as intended in OCOPOMO. Both discourse

analysis and argument visualisation tools are still in an early stage with much room for improvement

and are not easily adoptable and applicable to meet the scenario analysis requirements of OCOPOMO.

For the visualisation of some scenario analysis results it might be interesting to further consider these

tools but in the end none of these categories of tools meet the criteria for scenario analysis to the same

degree as CAQDAS systems do. This is why no evaluation is presented for argument visualization and

discourse analysis tools.

3.3.2. Definition of criteria for selecting tools to incorporate into ICT toolbox

Initial statements of needs and rations that must be used in evaluating the decision for a specific tool or

the combination of tools to form correct judgments regarding the tool support of the intended scenario

building and analysis are made in D1.1 [Bicking et al., 2010]. The requirements formulated in D1.1

ground the definition of criteria for selecting tools for scenario building and scenario analysis. Since

production of D1.1, the vision of open participatory scenario building and policy modelling made a

progress and takes more and more shape. The definition of criteria will, thus, build on this progress.

3.3.2.1. Definition of criteria for selecting tools for scenario building

Scenario building aims at producing narratives that provide the fundamental basis for policy model

design. This means that criteria for scenario building are strongly related to criteria that are applicable

for collaborative writing tools. The key features important for scenario building are [Kolabora, 2007]:

Functionality Description

CWT
115

 Key functionalities of CWT

 Text chat (T-1, T-4, T-12, I-5) The presence of a text chat that users can utilize to

communicate while editing

 Versioning (T-5, I-11) The capability to track all changes made to the original

document and go back to older versions

 RSS (T-24, T-30) Support for RSS feeds, allowing users to get real-time

notifications when changes are made

 Email updates (T-24, T-34) The capability to receive email updating users when there are

changes to the documents that are being edited

115

 Identifiers in parentheses represent IDs of user requirements as identified in D1.1 [Bicking et al., 2010]

http://www.businessdictionary.com/definition/statement.html
http://www.businessdictionary.com/definition/need.html
http://www.businessdictionary.com/definition/decision.html
http://www.businessdictionary.com/definition/form.html
http://www.businessdictionary.com/definition/judgment.html
http://www.businessdictionary.com/definition/regarding.html

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Public/Private (T-37, I-4) The possibility to set up private or public collaborative editing

sessions

 Web-based (I-7, I-NF-7) The type of collaborative system should be web-based

 Comments (T-25) The possibility to add comments to the document

 Expected familiarity (I-NFT-1, I-

NFT-8)

The degree to which a user recognizes user interface

components and views their interaction as natural; the

similarity of the interface to concrete objects the user has

interacted with in the past

Table 9 Criteria for selecting tools for scenario building derived from requirements identified in

D1.1

The following features are not directly corresponding to user requirements identified in D1.1. They

propose new requirements that came up while progressing with the definition of the scenario building

process.

Functionality Description Reason

CWT Key functionalities of CWT Reasons for new requirements

 File types supported What are the supported file

formats for the files that can be

edited collaboratively

For scenario building it is important that

the CWT supports the file format to be

decided on

 Max editors The maximum number of editors

allowed

As mass-collaboration is wanted, the

tool to be used should allow for a

certain high number of editors (persons)

 Real-time co-editing The possibility to collaboratively

edit in real-time, i.e. several

people shall edit the document at

the exact same time, making

different changes in real-time

with very little latency

It is a crucial quality criteria in terms of

usability that the tool allows multiple

editors at once to build the scenario(s)

 Price Open source software (OSS) or

proprietary

The final ICT toolbox shall be available

for free for everyone to use and improve

the system, therefore, it is necessary to

select only OSS tools as components of

the system including the ICT toolbox

Table 10 Criteria for selecting tools for scenario building that came up while progressing

with the definition of the scenario building process

In addition to CWT, several e-participation tools (in particular the CMS category) are available that

support either single criteria or a collection of these criteria (cf. section 3.2 on e-participation tools and

technologies).

3.3.2.2. Definition of criteria for selecting tools for scenario analysis

Analysis of scenarios aims to identify and extract relevant information and parameters for policy

modelling. The following features are important for supporting the scenario analysis:

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Functionality Description

CAQDAS
116

 Key functionalities of CAQDAS

 Coding of text (T-39, FR01_PM,

FR03_PM, FR04_PM,

FR05_PM)

To assign or better to link keywords to text passages thereby

ensuring that a keyword clearly describes the meaning of a text

passage

We distinguish between the following features [Koenig, 2010]:

 In vivo coding, i.e. assign the text that is to be coded to a

code, whose label is the text itself. While this is a very

efficient method for coding, there might be theoretical

consideration to use this option cautiously.

 Contextual coding, i.e. after searching your data for

certain text and/or codes, you might jump to your finds and

code them in context.

Automatic coding allows the user to perform text and/or

code searches and assign a code to the search results.

 Recovery of the coded position

(T-39)

Recovery of the coded position within the text material to

avoid de-contextualization and ensure traceability of results

 Cluster codes (T-39, FR01_PM,

FR03_PM, FR04_PM,

FR05_PM)

Advance codes by combining those that have the same and/or

similar meanings to superior codes
117

Most CAQDAS systems allow annotating codes in a variety of

ways.

 Code relations (T-39, FR01_PM,

FR03_PM, FR04_PM,

FR05_PM)

Code relations between codes

 Depict the net of issues and

relations (NFR01-PM, related to

I-39)

Depict the net of issues and relations. All codes are usually

stored in a codebook. In some CAQDAS the codes can be

structured in a hierarchy and/or a network. Some CAQDAS

also allow colouring codes to organize them [Koenig, 2010].

 Flexible collecting several

additional data (FR02_PM,

FR03_PM, FR04_PM,

FR05_PM)

Flexible collecting several additional data related to the code

such as personal background, government level. This

information is necessary to avoid removing the issues from

their original context.

Table 11 Criteria for selecting tools for scenario analysis derived from requirements identified

in D1.1

The following features are not directly corresponding to user requirements identified in D1.1. They

propose new requirements that came up while progressing with the definition of the scenario building

process.

116

 Identifiers in parentheses represent IDs of user requirements, identified in D1.1 [Bicking et al., 2010]
117

 In social sciences the term ―categories‖ is used to classify broad groups of similar concepts that are used to

generate a theory. Concepts are collections of codes of similar content that allows the data to be grouped. So, the

term ―concept‖ classifies superior codes or better clusters of codes. The OCOPOMO nomenclature uses the term

―issues‖ to classify a cluster of codes concerning similar contextual aspects

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Functionality Description Reasoning

CAQDAS Key functionalities of CAQDAS Reasons for new requirements

 Information structuring,

querying and

presentation

Identifying and structuring the

information extracted from the

unstructured scenarios as needed for the

CCD and policy modelling, e.g. the

social network, the social process, etc.

The tools applied for scenario

analysis shall deliver results

valuable for the development

of the CCD and simulation

model

 Memos Record comments and questions to text

passages, codes and/or categories

thereby ensuring that a linkage is built

between comment and questions and

the corresponding text passages, codes

or categories

Memos are needed to support

the communication inside the

team of analysts for

facilitating better and

common understanding of

analysis results e.g. if results

are not self-explanatory

 Price Open source software or proprietary The final ICT toolbox shall be

available for free for everyone

to use and improve the

system, therefore, it is

necessary to select only OSS

tools as components of the

system including the ICT

toolbox

Table 12 Criteria for selecting tools for scenario analysis that came up while progressing with

the definition of the scenario analysing process

3.3.3. Evaluation of tools

In this subsection two overviews of information about tools are provided – one for scenario building

and the other one for scenario analysis. The overviews are designed to help make informed choices

between tools, to plan for their effective use and to manipulate the tools in creative ways to meet

methodological and practical needs of OCOPOMO scenario building and analysis.

The reviews provide up-to-date comparative information about selected tools for both scenario

building and analysis. The reviews include both commercially available and free/open source

products. We aim at introducing the leading tools which are well established in the respective fields.

Reviews of ICT support for scenario building and analysis do not provide an exhaustive account of all

the features and functions provided by the tools but are designed to highlight the key features

important for OCOPOMO scenario building and analysis. The comment section at the end details

certain aspects we consider as worth knowing.

3.3.3.1. ICT support for scenario building

This sub-section focuses on the evaluation of collaborative writing tools for scenario building. The

next table provides an overview of several collaborative writing tools according to the criteria

formulated in subsection 3.3.2.1. The collaborative writing tools presented merely a selection of the

tools available but do not claim for completeness.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Tools/

Criteria

Zoho Writer Write-board Google Docs &

Spread-sheets

NearTime Socialtext

File types

supported

Text, Images Importing

external files is

not possible

Text, Spread-

sheets, Images

Text, Images Text, Images

Text chat No No Yes No No

Versioning Yes Yes Yes Yes Yes

RSS No No Yes Yes Yes

Email updates Yes Yes No Yes Yes

Public/Private Public/Private Public/Private Public/Private Private Private

Max Editors N/A Unlimited 50 Unlimited Unlimited

Real-time co-

editing

No No Yes No No

Web-based Yes Yes Yes Yes Yes

Comments No No Yes Yes Yes

Export/File

formats

Yes No Yes Yes Yes

Price Free Free Free Proprietary Free

Familiarity No No Yes No No

Tools/

Criteria

Quick Doc

Review

EditGrid Synchro

Edit

Please Review Coventi Pages

File types

supported

Text Spread-sheets Text Text, Images MS Word

Text chat No Yes Yes No No

Versioning Yes Yes No Yes Yes

RSS No No No No No

Email updates Yes No No N/A Yes

Public/Private Public/Private Public/Private Private Private Private

Max Editors N/A N/A N/A N/A N/A

Real-time co-

editing

No Yes Yes No No

Web-based Yes Yes Yes Yes Yes

Comments Yes No No Yes Yes

Export/File

formats

Yes Yes No No Yes

Price Proprietary Proprietary Free Proprietary Free

Familiarity No No No No No

Table 13 Evaluation of collaborative writing tools based on key features [Kolabora, 2007]

All collaborative writing tools evaluated are more or less suitable and worth considering for the

implementation of the toolbox. But financial issues and usability criteria should be considered, too.

Only five out of ten investigated tools are free and open source. Besides, only the basic editions of two

further tools are free and open source. As the toolbox shall be available for free at the end of the

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

project in order to not discriminate poor countries from usage, those tools which are proprietary are

rejected from further considerations.

From user perspective, usability including in particular familiarity with and learnability of the tools

deployed play a central role for participating in the scenario building process. Hence, using well-

known e-participation tools such as on-line forums, wikis or blogs for scenario building is likely to

succeed in attracting people to participate. This means also that a system deploying unfamiliar

collaborative writing tools is likely to fail in establishing long-lasting interest of ordinary people to

participate. Scenario building takes a long time to do, thus, it is wise to deploy tools that require little

training and/or explanation time. The effort it takes people to learn working with unfamiliar

collaborative writing tools is likely too high in comparison to the benefit stakeholders may perceive

through participation. If learning time is the typical measure, tools (i.e. user interfaces) are typically

easier to learn when they are familiar. Familiarity may come from using tools people already use and

made experiences with. This is why we propose to use a combination of e-participation tools to

provide the key features required because many people experienced these tools over the last years in

the course of the boom of using web 2.0 technologies in private life and every day business. People are

social beings, i.e. sometimes it really does not matter how magnificent the tool is; if they do not know

how to use it, they just will not use it. But for a long term sustainable engagement it is necessary that

people spend their time with building scenarios and not with learning how to express themselves.

Besides, CMS as mentioned in section 3.2 provide also much functionality that are valuable and worth

consideration for collaborative scenario building, in particular the support of workflows and

versioning. This tool category is therefore also applicable as it allows the following functionalities:

personalised profiles, rating content, on-line meetings and chats, comment content, moderated and

non-moderated discussions, visibility of discussions for certain user roles, multiple instances of a

forum, possibility to order entries in chronological order and for topics, rating of contributions and

contributors, notification via RSS feed and email, different types of questions & answers, graphical

presentation of the results. The fact, that all evaluated CMS tools are open source and meet the basic

requirements identified in D1.1 and criteria derived and presented in section 3.3.2.1, grounds the

recommendation to further consider CMS for the scenario building implementation instead of CWT.

3.3.3.2. ICT support for scenario analysis

This subsection focuses on the evaluation of CAQDAS for scenario analysis. The next table provides

an overview of several CAQDAS systems according to the criteria formulated in subsection 3.3.2.2.

The CAQDAS presented merely a selection of the most popular and advanced tools available but do

not claim for completeness.

Tools/

Criteria

ATLAS.ti 5.0 RC2 HyperRE-

SEARCH 2.6

Kwalitan 5.0 MAXqda 2k3

In vivo Yes No Yes Yes

Contextual Simple Difficult Simple Difficult

Automatic Very slow Difficult Simple text only Quick and stable

Recovery of code

position

Yes Yes Yes Yes

Cluster codes Yes Yes Yes Yes

Code relations Yes No information No information Yes

Visualising Flat, but variable Flat Complex tree Hierarchical

http://www.dict.cc/englisch-deutsch/familiarity.html

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

network structure linked codes structure

Information

structuring,

querying and

presentation

Not as intended in

OCOPOMO

Not as intended in

OCOPOMO

Not as intended in

OCOPOMO

Not as intended in

OCOPOMO

Memos Yes Yes Yes Yes

Flexible data

collection

Not as intended in

OCOPOMO

Not as intended in

OCOPOMO

Not as intended in

OCOPOMO

Not as intended in

OCOPOMO

Price Proprietary Proprietary Proprietary Proprietary

Operating system Windows XP /

Vista / 7

Windows 2000 /

XP / Vista / 7

Mac OS X

(PowerPC or Intel)

Windows XP /

Vista

Windows XP /

Vista / 7

RAM 2 GB 2 GB 8 MB 2 GB

Free disk space 50 MB 41 MB 5 MB 130 MB

Tools/

Criteria

QSR NVivo 2.0 Coding Analysis

Toolkit

Digital Replay

System

RQDA

In vivo Yes Yes Yes Yes

Contextual Simple Simple Simple Simple

Automatic Very slow Yes No No

Recovery of code

position

Yes Yes Yes Yes

Cluster codes Yes No Yes Yes

Code relations Yes Yes Yes Yes

Visualising

network structure

Hierarchical,

diverse codes

Not as intended in

OCOPOMO

Not as intended in

OCOPOMO

Not as intended in

OCOPOMO

Information

structuring,

querying and

presentation

Not as intended in

OCOPOMO

Not as intended in

OCOPOMO

Not as intended in

OCOPOMO

Not as intended in

OCOPOMO

Memos Yes Yes Yes Yes

Flexible data

collection

Not as intended in

OCOPOMO

Not as intended in

OCOPOMO

Not as intended in

OCOPOMO

Not as intended in

OCOPOMO

Price Proprietary GPLv3 licence BSD licence BSD licence

Operating system Windows 2000 /

XP

Windows XP /

Server 2003 / Vista

/ 7

Windows XP

Mac OS X

No information

RAM 128 MB 2 GB 2 GB 2 GB

Free disk space 125 MB No information No information No information

Table 14 Evaluation of computer-assisted qualitative data analysis software based on key

features (retrieved from [Koenig, 2010] and [Surrey, 2010])

The individual reviews of CAQDAS are intended to be read in conjunction with the references and

information provided in subsection 3.3.1.2, which together provide a broader comparison of CAQDAS

functionalities. All CAQDAS systems evaluated are more or less suitable and worth considering for

the implementation of the toolbox. But financial issues should be considered, too. As the toolbox shall

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

be available for free all tools which are proprietary are rejected from further considerations. However,

the most important requirement is that the scenario analysis produces high-level input for creating

conceptual descriptions and the simulation model. As this requirement is not met by any of the

CAQDAS and cannot be met by any other tool available so far, it was decided to conceptualise and

implement an analysis tool during the project runtime that will meet the exact requirements of

OCOPOMO scenario analysis and those requirements to support the integration of stakeholder-

generated scenarios and formal models.

The final knowledge is not yet generated of how to design the integration of stakeholder-generated

scenarios and formal models. This means that OCOPOMO may have to modify specific features based

on requirements not yet known. In this context, we assume that none of the existing tools is flexible

enough in the manner OCOPOMO may need. Since a tool under our own control can be more easily

and quickly adopted (if requirements are changing over time) than the ones we did not implement by

ourselves, we propose conceptualising and implementing a tool for covering the scenario analysis and

the transformation process towards the simulation model.

3.4. FORMAL MODELLING TOOLS AND TECHNOLOGIES

Formal modelling in the context of the OCOPOMO project refers to a process of abstraction that turns

narrative descriptions of policy measures and their impacts into precise, formal statements that are

isomorphic with logical theorems. The models are agent-based so that each software agent represents

an individual or an organisational or collective stakeholder as may be deemed appropriate in the

specific social context.

As discussed in the DOW [Ocopomo-DoW, 2009], one of key advantages of agent simulation over

other paradigms like system dynamics or queuing models [Gilbert and Troitzsch, 2005] is that agents

capture relevant aspects of how people think and behave both individually and when working together,

while other models reflect doctrinal standard operating procedures, how machines should operate or

laws of physics. On the downside, major drawbacks associated with using agent simulation are the

complexity of the resulting control system that needs to be debugged and the lack of facilities to

adequately represent/trace knowledge contained by each agent and the selection of tactics used by the

agents.

In this project as in several projects before it (FP6 projects CAVES
118

, EMIL
119

, FP5 project

FIRMA
120

), the behaviour of the agents will be modelled declaratively. This means it is driven by rules

that capture as far as possible relationships described by stakeholders in their own linguistic terms.

The virtues of this approach include:

 The models and the behaviour of the agents can then be validated at micro level by seeking

evaluations from the stakeholders who know the persons or collectives represented by the

agents.

 Numerical outputs from the model can be produced for comparison with analogous, real social

data.

 The agent rules can produce text explaining the reasons for actions taken by the agents where

such explanations are drawn from the conditions of the rules that produce the actions. The

118

 http://www.cfpm.org/caves
119

 http://emil.istc.cnr.it/
120

 http://cfpm.org/firma/

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

result is a running narrative about and by the agents in the models and the consequences of

their actions. This output amounts to a formally generated scenario.

 The agent-based model structure offers scope for software agents to be replaced in the

simulation runs by human users.

While it would be possible to develop and implement such formal models in any general-purpose

programming language, it is only sensible to apply existing toolkits particularly suited to the purpose

of building (complex) agent-based simulation models.

It is our understanding that declarative modelling is often the most appropriate technique to capture

social phenomena [Moss and Edmonds, 2005] whereas many physical or biological processes are best

described by numerically-based formalisms. Since the models developed in the OCOPOMO project

need to represent both, social and physical processes, it is therefore important that a formal modelling

environment should support both declarative and imperative/procedural programming paradigms.

Due to the lack of integrated software for this policy modelling approach, which would be capable to

cope with the anticipated complexity, models developed in the context of the OCOPOMO use cases

certainly will probably involve more extensive functionality than any single existing tool can provide.

As a consequence, the OCOPOMO policy modelling tool will be composed of several frameworks and

components, each covering a specific set of functionality.

3.4.1. Description of available alternatives

This section presents the state of the art in (i) agent-based simulation platforms and (ii) rule engines.

Both need to be combined in OCOPOMO to allow for declarative, i.e. rule-based policy modelling as

set out in Deliverable 1.1 [Bicking et al., 2010]. While an agent-based simulation platform provides

the necessary functionality to build and execute agent-based models, a rule engine adds the

functionality to define the agents‘ behaviour in terms of rules. A combination of these tools will

therefore provide the integration of declarative features within agent-based social simulation software.

There are several options to achieve the combination of rule engine and agent-based model, ranging

from using one rule engine per agent to sharing not only the rule engine but the complete rule base

amongst all agents within a model. All the options have their advantages and disadvantages regarding

e.g. memory requirements, execution speed and conceptual clarity [Caves, 2006].

In the following, we will constrain the discussion to toolkits which are available free and open source

as this is the foremost requirement for the integrated ICT toolbox to be developed in OCOPOMO.

3.4.1.1. General agent-based simulation platforms

Over the past decade, a variety of agent-based simulation platforms have emerged. While some of

them are built for a particular domain, ranging from education to battlefield simulation [Berryman,

2008], a number of them are aimed at general-purpose modelling. The following gives an overview of

the main general-purpose agent-based simulation platforms that are available for free and (more or

less) open source
121

. For a comprehensive review of the currently existing agent-based simulation

121

 An example of a commercial simulation platform can be AnyLogic (http://www.xjtek.com/) currently in

version 6.5.1 combining agent based modeling with process based and system dynamics modeling approaches.

http://www.xjtek.com/

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

toolkits see [Nikolai and Madey, 2009]; other reviews focus on a smaller selection of toolkits (e.g.

[Railsback et al., 2006], [Tobias and Hofmann, 2004], [Gilbert and Bankes, 2002]).

Swarm

Swarm was originally developed at the Santa Fe Institute [Minar et al., 1996] and is now developed by

the Swarm Development Group. It is the ―ancestor‖ of many of the current ABM (Agent-Based

Modelling) platforms. The basic architecture of Swarm is the simulation of collections of concurrently

interacting agents (―swarms‖), and this paradigm is extended into the implementation, including agent

inspector actions as part of the set of agents. Swarm is a stable and widely used platform, and seems

particularly suited to hierarchical models. As such, it supports good mechanisms for structure

formation, through the use of multi-level feedback between agents, groups of agents, and the

environment, which are all treated as agents.

The Objective C Swarm requires learning Objective C, which can be a difficult language for

inexperienced programmers. The Java version of Swarm feels cumbersome, and is worse than the

Objective C Swarm in terms of documentation and code examples [Berryman, 2008].

Repast

Repast, the Recursive Porous Agent Simulation Toolkit [North et al., 2006], is a widely used, free, and

open source agent-based modelling and simulation toolkit. While the main version is Java-based

(Repast-J), two other versions have been released: Repast for the Microsoft .NET framework and

Repast for Python scripting.

Repast provides modellers with a framework for agent-based simulations along with a large variety of

libraries for the representation of environments (grid, network, topography), mathematical operations

(e.g. statistical analysis, random number generation), visualisation (diagrams, animations etc.) and

some basic AI functionality like neural networks and genetic algorithms. Repast-J can easily be

extended with any functionality available for Java-based applications. A recent version (Repast

Simphony) is intended to provide an alternative in form of graphical control flow design in

conjunction with an alternative modelling language (Groovy), but more complex or ―beyond standard‖

models still require the use of general-purpose programming languages.

Mason

MASON (―Multi-agent Simulator Of Neighbourhoods / Networks") is a general purpose ABM library,

which is geared towards speed and portability. It is implemented in Java. While MASON provides

many of the same features as Repast, its core has been kept deliberately small, making use of pre-

existing libraries instead (e.g. JFreeChart to produce charts and graphs). According to the developers,

―MASON carefully delineates between model and visualization, allowing models to be dynamically

detached from or attached to visualizers, and to change platforms mid-run‖ [Luke et al., 2005].

Primarily, the advantage of MASON is in speed, however it is faster than Repast by only a small

amount, and for some models is slightly slower than Repast [Railsback et al., 2006]. A strong point in

favour is that MASON guarantees the replicability of model runs, i.e. it can produce results that are

identical across platforms.

Ascape

Ascape [Parker, 2001] is another general-purpose toolkit for agent-based simulation. It was originally

developed at the Brookings Institution as software for the seminal Sugarscape model [Epstein and

Axtell, 1996]. As the majority of ABM toolkits, Ascape is implemented in Java. It provides

functionality similar to Swarm (―scapes‖ as collections of agents instead of ―swarms‖) and Repast.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Ascape claims to be ―designed to be flexible and powerful, but also approachable, easy to use and

expressive‖
122

.

NetLogo

NetLogo is a ―multi-agent programmable modelling environment‖ [Wilensky, 1999], aimed to support

users in rapidly creating models and running experiments with them. It is easy to handle and requires

the least programming experience of all reviewed toolkits, but shows certain restrictions, e.g. a grid-

based environment. Agent behaviour is described through a functional language with no further means

for structuring code, which results in the disadvantage that agent descriptions cannot be separated

from technical details of algorithms and user interfaces which are of no interest to stakeholders. The

documentation and number of example models for NetLogo are both excellent, as is the user

community, which provides a lot of support to new users.

NetLogo itself is implemented in Java and provides APIs for controlling it from external code and

extending the language with new commands and reporters; this makes extension possible albeit

somewhat difficult. For the future, a release as open source is planned
123

.

 Table 15 gives an overview of the technical details of the presented agent-based simulation platforms.

Platform Swarm Repast Mason Ascape NetLogo

Latest version 2.2 3.1 14 5.6.0 4.1.1

URL http://www.s
warm.org/

http://repast.s
ourceforge.net/

http://cs.gmu.e
du/~eclab/pro
jects/mason/

http://ascape.s
ourceforge.net/
index.html#Int
roduction

http://ccl.nort
hwestern.edu/
netlogo/

License GPL (GNU
General Public
License)

BSD AFL 3.0
(Academic Free
License)

BSD Personal
licence (free
software, code
modification
granted for
educational/re
search
purposes,
source code not
yet available)

Category Library Library Library Library Simulation
Environment

Programming
language

Objective C
(Java)

Java (Python,
C#)

Java Java Logo dialect

Table 15 Basic characteristics of the selected ABM platforms

3.4.1.2. Rule engines (rule-based systems)

The following discusses a representative sample of currently available rule engines. Jess is by far the

most stable, comprehensive and most widely used rule engine. A number of other, open-source rule

122

 http://ascape.sourceforge.net/index.html#Introduction
123

 http://ccl.northwestern.edu/netlogo/faq.html

http://ascape.sourceforge.net/index.html#Introduction
http://ascape.sourceforge.net/index.html#Introduction
http://ascape.sourceforge.net/index.html#Introduction
http://ascape.sourceforge.net/index.html#Introduction

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

engine projects have emerged
124

, partly implementing the standard Java Rule Engine API [jsr-94,

2004]. Most of these projects, like Jess, make use of the RETE algorithm [Forgy, 1982] to compile the

rule bases in order to speed up performance.

Jess

Jess, the Java Expert System Shell, is a rule engine and scripting environment developed at Sandia

National Laboratories by Ernest Friedman-Hill. Although not open source, it is available free of cost

for academic purposes, including the source code. Since it is written entirely in Java and allows for

calling Java methods from rules, it integrates well with any Java software.

Jess consists of a rule interpreter which can apply both forward and backward chaining, using an

improved version of the fast but memory-intensive RETE algorithm to match facts from the fact base

to rules in the rule base. Declaring facts and rules is done via a script language with a LISP-like

syntax. This language supports not only the manipulation of symbolic facts but also method calls on

arbitrary Java objects, thus facilitating the combination of declarative modelling and imperative

modelling. Jess has a wide and active user community, with good documentation and support by the

developer.

JRuleEngine

JRuleEngine is a forward-chaining rule engine, i.e. the engine implements an execution cycle that

allows the action of one rule to cause the condition of other rules to become met. In this way, a

cascade of rules may become activated and each rule action executed. Forward-chaining rule engines

are suitable for problems that require drawing higher-level conclusions from simple input facts.

JRuleEngine is based on the Java Rule Engine API [jsr-94, 2004], i.e. rules can be retrieved from an

XML file or can be stored via JRuleEngine APIs, so rules could be stored in any kind of external

storage, like a database. The distribution consists of a library that can be embedded into any Java

application.

When evaluating JRuleEngine as a candidate for rule engines in OCOPOMO we found it to be

unsuitable due to its internal implementation, which allows only one instance per fact type at any one

moment in time.

JEOPS

JEOPS [Figueira and Ramalho, 2000], the Java Embedded Object Production System, is a declarative

rule engine, which extends the Java programming language with a mechanism for embedding first-

order, forward-chaining production rules. It does implement the RETE algorithm and, thus, is

optimized for application in expert systems. With restrictions, it can be (and also has been) used for

simulation purposes.

JEOPS is no longer supported by its developers and does not have an active user community.

Table 16 gives an overview of the technical details of the discussed rule engines:

Rule engine Jess JRuleEngine JEOPS

Latest version 7.1p2 1.3 2.1.2

URL http://www.jessrules.c
om

http://jruleengine.sourc
eforge.net/

http://www.di.ufpe.br/
~jeops/

124

 http://java-source.net/open-source/rule-engines

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

License Available free for
academic use;
redistribution of the
source code under any
open source license is
prohibited

GPL Unspecified open source

Category Rule engine Rule engine Rule engine

Programming
language

Jess script language,
Java

Java Java, own rule
specification language

Table 16 Basic characteristics of the selected rule engines

3.4.2. Definition of criteria for selecting tools to incorporate into ICT toolbox

The criteria for selecting tools to incorporate into the ICT toolbox can be divided into more general

criteria and criteria specific to the OCOPOMO project. Important criteria in general are the following

([Najlis et al., 2001], [Railsback et al., 2006]):

Open source The ability to obtain the source code. It enables users to extend the facilities

provided by the software, or to add in other platforms to provide missing

facilities. This can also be of importance where there are bugs in the

platform, or if the documentation is poor.

Flexibility This is the ability to write custom agents and agent behaviours (no limitation

to a set of predefined possibilities to select from).

Speed Speed of execution is important, particularly under statistical replication and

also when a variety of scenarios or parameters need to be explored.

Support Support is important in order to fully use the platform or to even start to use

the software. The support provided by user communities can also be of high

importance and this is considered along with documentation.

Facilities The facilities the software provides e.g. for drawing graphs, recording

simulation data to file for further analysis, etc.

Scalability Possibility to perform mass simulations (can deal witch a big number of

agents, big number of rules/facts, etc.

Extendability Important for possible extension and/or customisation of the tool (e.g.

adding code written in a general programming language).

Table 17 Criteria for selecting tools for agent-based formal modelling

3.4.3. Evaluation of tools

General agent-based simulation platforms

There is a range of agent-based simulation platforms, some of which have small user communities and

depend on a single developer for maintenance and support. We have restricted our evaluation to

widely used platforms with substantial development teams.

Repast is currently available in two versions: Repast 3.1 and Repast Simphony. Both are Java libraries

that provide user interfaces for agent-based simulation models. Whilst it is straightforward to

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

implement agents in Repast, there are no constraints on how the agents are implemented as long as

they are implemented in Java. Repast provides a framework to activate the agents as well as facilities

for producing graphs of various kinds to report and/or summarise numerical measures or numerically

defined outputs from agent activity. Repast Simphony, in addition, provides a graphical interface for

implementing agents.

MASON has more recently been developed as an alternative to Repast with the intention of making

the platform more scalable and faster in its use of mathematical operations. Like Repast, it is

implemented as a set of Java libraries. It has a much smaller user base. As in Repast, the

implementation of agents is independent of and unconstrained by the platform.

NETLOGO has a much more elaborated graphical interface for designing and implementing agents and

for controlling behavioural parameters with sliders and menus that are not bundled with either Repast

or MASON. However, it constrains the implementation of agents to render the design consistent with

the top-level interface with its sliders and menus and these constraints render it unsuitable for

declaratively represented agents. It is therefore not suitable for use in OCOPOMO.

ANYLOGIC is a commercial, closed-source modelling platform and is, for that reason alone, excluded

for consideration in OCOPOMO. Like Repast and MASON, the implementation of agents is not

highly constrained and it also has specific support for system dynamic modelling. System dynamics

was not included in the OCOPOMO software requirements analysis so restricting ourselves of open-

source software, thereby to reject the use of AnyLogic, has no cost in terms of required functionality.

The only attractive and viable candidates for the simulation platform to be used in OCOPOMO are the

two versions of Repast and MASON. We have selected Repast because it has been in development for

a much longer period of time than MASON and it has a much wider user base with a wider range of

applications. Consequently, it seems more likely that instabilities and bugs have been found and

removed. Certainly, in using Repast 3.1 for more than five years, no programming or design problems

have been encountered. Also, numerical calculations are not dominant in the OCOPOMO models

since we have chosen to implement agents around a rule-based, declarative design. As between

Repast 3.1 and Simphony, we have decided to stay with Repast 3.1 because the lack of additional

graphical functionality and the additional layers of software required to support the graphical

interfaces. Nonetheless, declarative agent software to be used should be implemented in such way that

it will run on each of these platforms linked to them by an abstract model class.

Rule engines

Existing rule-based systems are mainly optimised for expert systems where the fact base changes

infrequently or not at all. To take advantage of this property, this type of software frequently uses

algorithms that compile the rule base (in most cases: a variant of the RETE algorithm [Forgy, 1982]).

If a fact is added, modified or deleted, then the rule base is recompiled. In a simulation environment

where the fact bases represent the working memory of agents and are changing frequently,

recompiling becomes more or less continuous and, therefore, time-consuming as well as highly

memory-intensive. Having experimented with several RETE-based rule engines like JESS and JEOPS,

we have confirmed that the class of RETE-based declarative and rule-based systems are inappropriate

for social simulation in general. We have not been able to find any currently supported declarative

systems that are not based on the RETE algorithm. Two declarative, rule-based agent modelling

systems, SDML [Moss et al., 1998] and DESIRE [Brazier et al., 1997], that are not based on the RETE

algorithm are no longer supported and the programming code is impenetrable. Several OCOPOMO

partners, Moss (SMA) and Meyer (MMU) are well experienced in declarative modelling and Moss in

particular produced the rule-based software that evolved into SDML.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

On the basis of this experience, a decision was taken not to use any existing rule engine but to

implement a new one better suited for social simulations. Therefore, we are now developing a

declarative, rule-based, agent modelling system (DRAMS) that has the efficiency properties of

SDML. A number of OCOPOMO project partners (SMA, UKL, MMU) are involved in the

development of this software within the scope of WP5 [Moss et al., 2010].

Each agent has a rule base and a fact base. The rules govern agent behaviour and interaction. Because

agents are not universally informed about every aspect of the system state, they have different

perceptions, which, via rules, lead them to add different facts or logic-like clauses to their databases.

As a result and even within the same class of agents, different fact base contents evolve so that the

agents behave differently and generally uniquely. This is a very flexible and, if properly implemented,

scalable approach to agent-based social simulation in general and policy modelling in particular. To

achieve the required speed of execution, rule bases will be compiled on dependency digraphs where

each link indicates that conditions on the left hand side (LHS) of the rule represented by the to-node

are satisfied if the right hand side (RHS) of the rule represented by the out-node has been executed.

The development of rule bases is facilitated by being able to run a model, stop it and then explore the

fact base of any agent. The proposed system includes facilities for supporting the modelling and

simulation process (interactive generation and management of rule and fact bases, calculating and

visualization of dependency graphs). By writing conditions line by line and then determining whether

they are satisfied, the LHS of a rule can be developed and tested incrementally within a known system

state.

3.5. TOOLS PRESELECTON AND NEW REQUIREMENTS IDENTIFICATION

3.5.1. Additional requirements

Different tools have been evaluated in order to investigate degree of match between the tools and

criteria we consider relevant for OCOPOMO. Most criteria were based on (or inspired by) user

requirements presented in [Bicking et al., 2010]. In addition to these criteria, several criteria have been

used which do not reflect defined user requirements. They are based on our current understanding of

processes standing behind policy modelling. In order to reflect the evolution of this understanding,

these additional criteria must be transformed into new requirements. As a result, the following new

requirements have been defined:

Requirement ID: SOTA-1 Requirement Type: Functional Priority: Should-have

Name: Workflow engine

Description: Workflow engine to manage sequences of activities e.g. publication and review

workflows for documents, forum entries, scenarios etc.

Measurement indicators: Available functionality.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Requirement ID: SOTA-2 Requirement Type: Functional Priority: Should-have

Name: Content/ WYSIWYG

Description: Texts should be editable by users with the help of an editor enabling ‗what you see is

what you get‘ editing manner.

Measurement indicators: Available functionality.

Requirement ID: SOTA-3 Requirement Type: Functional Priority: Should-have

Name: File types supported

Description: Several file types support enables to manipulate and/or retrieve information from

document sources using different formats. It broadens possible sources to be utilised as information

resources.

Measurement indicators: Possibility to read/write in file formats required by pilot applications.

Requirement ID: SOTA-4 Requirement Type: Functional Priority: Should-have

Name: Several document editors

Description: Texts should be allowed to be edited by a certain number of human editors. The

maximum number of editors should be set in a way enabling open collaboration over texts (an

exact number limit to be decided after gaining deeper understanding of OCOPOMO processes).

Measurement indicators: Available functionality of a number of editors.

Requirement ID: SOTA-5 Requirement Type: Functional Priority: Nice-to-have

Name: Real-time co-editing

Description: Texts should be editable by several users collaboratively in the same time, making

different changes in real-time.

Measurement indicators: Available functionality.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Requirement ID: SOTA-6 Requirement Type: Functional Priority: Should-have

Name: Information structuring

Description: Identifying and structuring the information extracted from unstructured texts (e.g.

scenarios and/or support documents). Structure can be represented by linking and/or clustering

relevant information.

Measurement indicators: Available functionality.

Requirement ID: SOTA-7 Requirement Type: Functional Priority: Should-have

Name: Memos

Description: To support recording comments, remarks, explanations and questions to text

passages, concepts, knowledge structures. Ensuring linking enabling represent mutual relations and

memberships.

Measurement indicators: Available functionality.

Requirement ID: SOTA-8 Requirement Type: Functional Priority: Must-have

Name: Non-RETE rule engine

Description: In order to use the rule engine in social simulations, the engine must be reasonably

fast and therefore cannot frequently recompile its rule base. Therefore the RETE algorithm is

inappropriate as a mechanism on which the rule base is constructed.

Measurement indicators: Rule engine not based on a RETE like algorithm available.

3.5.2. Tools preselection

Tool(s) selection for e-participation

Three software categories have been identified as categories worth considering for SOTA as they were

identified as valuable and supportive for fulfilling the collaborative purposes of OCOPOMO – CMSs,

e-participation platforms and wikis. These categories have been compared and it was argued and

reasoned that available open source CMSs meet the objectives and fulfil the collaborative purposes of

OCOPOMO better. Hence, the CMS category was selected for further investigation.

Seven CMS tools have been selected (1 tool written n JAVA, 5 tools written in PHP and 1 tool written

in PYTON programming language) and evaluated in accordance with a set of criteria based on

collected user requirements. The evaluation has revealed that all the tools under consideration are, in

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

general, able to support the collaborative purposes of OCOPOMO. Finally, considering the evaluation

results not only in the CMS category but across all categories, we have selected Alfresco CMS (with

Alfresco Share collaboration platform) due to the following facts:

 It is the only one Java-based solution from the evaluated systems – in order to have tight

integration of OCOPOMO platform, we have to find the best solution together with scenario

analysis, simulation and rule engine tools. In this moment it is clear that other Java-based

systems will be used (DRAMS, Repast), therefore it will be better for implementation tasks to

provide the same platform for content and collaboration core of the system.

 Alfresco has a strong content repository without real opponent among the evaluated systems.

This is important according to needs for management of complex and knowledge-intensive

data objects (concepts, linking of objects, etc.) created in OCOPOMO during scenario analysis

and policy modelling processes.

 Standards and novel technologies for content repositories like CMIS standard are available

there and are reusable in many different ways and provide strong interoperability and

integration possibilities. Alfresco is one of the leaders on standardization of content

management paradigm.

 Maturity level is very good and combined commercial/community model with strong support

of several leading companies in area predicts good sustainability, which could be a problem of

purely open-source projects.

 Only one required functionality is not supported – polling, which is quite simple for

implementation. If not considering polling in the evaluation, Alfresco is one of the best

solutions. Integration possibilities, platform and standards behind the Alfresco and its

repository are more important. Thus, it reflects all relevant implementation aspects for the

project better than other solutions.

 Alfresco offers also good products for developers. It is possible to use free Alfresco SDK to

customize it, prepare specific workflow, user interface tabs, portlets (called dashlets), all

within the prepared development kit.

Tool(s) selection for scenario generation

For scenario generation two software categories were identified as valuable and supportive for

fulfilling the collaborative scenario generation purposes of OCOPOMO – GSS and CWT.

GSS have been investigated and it was argued and reasoned that they are rather not applicable for

fulfilling the collaborative scenario generation requirements in a way as intended in OCOPOMO.

Therefore this category was not further considered.

CWT were selected for further investigation and ten tools have been selected and evaluated. The

evaluation according to criteria based on the collected user requirements has shown that the non-

proprietary CWT are, in general, able to support the collaborative scenario generation purposes of

OCOPOMO. But it was argued, that from user perspective the similar functionality can be provided by

the CMS category as well (moreover, this category benefits from the fact that prospective users are

probably more familiar with tools from this category and therefore this category is more likely to

succeed in attracting people to participate). Considering this as well as trying to minimise the number

of tools to be integrated within the OCOPOMO ICT toolbox, it has been decided to prefer usage of

CMS and therefore not to select any additional CWT tool but to utilise the already selected Alfresco

CMS for scenario generation.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Tool(s) selection for scenario analysis

For scenario analysis three software categories – CAQDAS, argument visualisation tools and

discourse analysis tools – were identified as valuable and supportive for fulfilling the collaborative

scenario analysis needs of OCOPOMO.

Argument visualisation tools and discourse analysis tools have been investigated and it was argued

and reasoned that they are rather not applicable for fulfilling the overall scenario analysis needs of

OCOPOMO. These tools can only be used for additional support but not to perform the core tasks.

Moreover, their methodological context is different from the one adopted by the project and their

adoption for our purposes would be too demanding and outside of available resources. Because of this

further consideration was not recommended.

CAQDAS were selected for further investigation and eight tools have been compared and evaluated.

The evaluation according to the requirements has shown that the CAQDAS tools are in generally able

to support the scenario analysis needs of OCOPOMO. A preselection of only non-proprietary

CAQDAS tools took place. However, after better understanding of processes behind transformation of

scenarios into formal models and definition of knowledge structures to be extracted from scenarios, all

the evaluated CAQDAS tools have been rejected as considerable modifications for meeting the

requirements of the scenario analysis as well as for a smooth transformation process are necessary.

Hence, the development of a new analysis tool was recommended (being under our own control and

therefore easily adoptable to current and potential upcoming requirements) and therefore no existing

CAQDAS tool has been selected.

Tool(s) selection for formal modelling

Two categories of software tools have been identified as supportive for formal modelling task – ABM

platforms and rule-based systems. In contrast to the above given areas (e-participation, scenario

generation and analysis), the selected categories are not contradictory – both categories should be

combined to provide suitable simulation software.

Five ABM platforms have been identified and investigated and based on this investigation two of them

have been identified as attractive and viable candidates. In order to ensure sustainability and minimise

expected problems, we prefer a candidate with longer history and reputation, wider user base and

wider range of applications. The selected candidate is Repast simulation platform.

Three mature rule-engines have been identified. Unfortunately, it was argued and reasoned that

although they are able to provide required functionality they are not applicable from the point of non-

functional properties – since they are based on frequent recompilations of knowledge bases (using a

variant of RETE algorithm), they are inappropriate for social simulations. Therefore no rule engine has

been selected to be reused. Instead of this, a decision to develop a new rule engine not based on the

RETE algorithm was taken. This new tool – a declarative rule-based agent modelling system

(DRAMS) is currently under development within the workpackage WP5 [Moss et al., 2010].

To summarise the decisions taken, based on the analysis of state of the art while considering collected

user requirements and current level of understanding of OCOPOMO processes, the following software

tools have been selected to be used:

 Alfresco/Alfresco Share CMS (collaboration and scenario generation)

 Repast (agent-based simulation platform)

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 DRAMS (rule engine - currently under development within the project‘s workpackage WP5)

Since all the selected tools use Java technology platform, Java technologies (e.g. JDO, JMS, JCR, etc.

based on JSR standards and specifications) are expected to be used to integrate the tools into the final

OCOPOMO ICT toolkit.

Functionality which is required but not provided by the selected tools will be provided by

adapting/enriching the selected tools or by additional tool(s) to be developed within next project

phases.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

4. ARCHITECTURE DESIGN METHODOLOGY

To produce an architecture of a system means to provide answers on many different questions. A

desire to present them in the form of a single monolithic model often yields in a model which is rather

complex and hard to understand. The reason is that such model must amalgamate information about

different important aspects of the architecture which are of interest for different stakeholder categories.

As a result, users are served poorly with such model since they may have problems to filter out

information relevant for them and not to be distracted by their effort to understand those parts of the

architecture which are valuable for other stakeholders.

One successful approach to manage the complexity of system architecture production is to employ a

―divide and conquer‖ principle – to partition the problem and to attack it from different directions

simultaneously. The architecture can be divided into several (interrelated) parts. Each of them deals

with a particular aspect of the architecture. IEEE Standard 1471 [IEEE, 2000] has formalised the

concepts behind this approach and provided a standardisation of terminology. The most important

concepts are view and viewpoint, which are defined as follows:

 A viewpoint is a collection of patterns, templates and conventions for constructing one type of

view. It defines the stakeholders whose concerns are reflected in the viewpoint, guidelines and

principles and template models for constructing its views.

 A view is a representation of one or more aspects of an architecture, from the perspective of

one or more concerns which are held by one or more of its stakeholders.

Thus, the architectural description of a system is composed from a set of views. Each view describes

one particular aspect of the architecture of the system. This separation allows concentrating on the

particular aspect only. That enables to conquer the complexity of a model representing this view, to

select and use means the most suitable for the aspect being processed, and to communicate ideas and

architectural decisions more clearly.

To guide architects in creating different views, viewpoints have been defined. A viewpoint represents

―a library‖ for architects – a set of templates and patterns that can be used off the shelf to create a

view. Thus, each viewpoint provides a guide how to deal with some aspect(s) of the architecture

description – it can be used as a point of departure for producing one or more views which will be

included into the description of the system architecture.

Viewpoints are independent of one another since viewpoints are defined in a way to be as disjoint as

possible. But there can be architectural decisions which have impact on many or all views derived

from the viewpoints. These decisions are usually driven by the need to ensure a certain quality

property to be exhibited by the system. Such quality properties cannot be defined as an additional

viewpoint, but must be addressed by several existing viewpoints. Such quality properties (often called

non-functional properties) can be addressed by architectural perspectives which are defined as

follows:

An architectural perspective is a collection of activities, tactics, and guidelines that are used to

ensure that a system exhibits a particular set of closely related quality properties that require

consideration across a number of the system's architectural views.

Perspectives are orthogonal to viewpoints – they can be applied to views. Such application ensures

that a perspective's system-wide quality property is addressed within a view. In principle, every

perspective can be applied to every view. In practice, a perspective is applied to only some views

which are relevant to the perspective in a particular context – not all combinations of perspectives and

views are needed.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

In order to illustrate the used concepts, Figure 4 provides an overall picture of these concepts and their

relationships [Rozanski and Woods, 2005].

Figure 4 Interrelations between core architecture concepts

 A system is built in order to address the needs, concerns, goals, and objectives of its

stakeholders.

 A stakeholder is a person, group, or entity with an interest in or concerns about the realisation

of the architecture.

 A concern about an architecture is a requirement, an objective, an intention, or an aspiration a

stakeholder has for the system.

 An architecture of a system is a particular arrangement of static and dynamic structures that

has the potential to exhibit the system's required externally visible behaviours and quality

properties.

 An architectural description documents the architecture of the system. It consists of a set of

views addressing concerns of system's stakeholders.

 A viewpoint defines the aims, intended audience, and content of a class of views and defines

the concerns that views of this class will address.

 A view conforms to a viewpoint and so communicates the resolution of a number of concerns.

The content of a view can be shaped by a number of perspectives.

 A perspective addresses a number of concerns of the system's stakeholders in order for the

system to exhibit the quality properties considered by that perspective.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

According to [Rozanski and Woods, 2005], there are six core viewpoints which are applicable for

traditional information systems. These viewpoints are complemented by ten perspectives which are

applicable to these viewpoints. Not all viewpoints and perspectives are applicable for describing the

architecture of any system. Depending on a particular case, some of them are more relevant than the

others. On the other hand, the architecture of a particular system can require the addition of a new

viewpoint/perspective extending the available set.

In order to describe the architecture of the OCOPOMO system, only a few basic views and

perspectives have been selected:

 Functional view - describes the system's functional elements, their responsibilities and their

interactions.

 Information view - describes the way in which the architecture stores, manipulates, and

distributes information.

The following perspectives have been selected:

 Internationalisation perspective - the ability of the system to be independent from any

particular language and/or country.

 Interaction perspective – describes user interface views and possible interactions with the

system which are available to users.

 Usability perspective - the ability of the system to enable users to interact with the system

easily and effectively.

The selection was based on characteristics of the prospective OCOPOMO system, on the actual phase

of development represented by this report and on the structure of the OCOPOMO project. As a result,

several view/perspectives have been disqualified from the selection. Some of them focus on aspects

considered within other parts of the project (e.g. Development view), aspects related with a very

detailed point of view (e.g. Performance perspective), aspects relevant only for more mature state of

the project (e.g. Operational or Deployment views) or aspects not considered relevant (e.g. Location

perspective).

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

5. USER-ORIENTED PROCESS PERSPECTIVE

The OCOPOMO approach is based on complex and interrelated processes which require careful

coordination of many different users of the system (i.e. stakeholders, policy modellers, policy analysts,

etc.) who communicate and collaborate on diverse tasks during the process of policy modelling. Our

goal is to create an ICT toolbox supporting the OCOPOMO approach and ensure robustness of the

platform and avoidance of possible defects (e.g. task duplication, high efforts of data search and

limited functionality of available tools), which can hinder workflow of policy process modelling and

result in low satisfaction of stakeholders.

Taking into account aforementioned, we believe that particularly in the policy making area the

stakeholders‘ view of the process is very important. The satisfaction of users of the ICT toolbox

influences the outcome of their work, namely the quality and accuracy of scenarios, policy models and

simulation results as well as policy decisions in the end. In order to meet the goal we have decided to

create use case diagrams in Unified Modelling Language (UML) and their descriptions, depicting a

user-oriented view of the system, that show system functions and roles of participating actors.

The developed use case diagrams correspond with the revised list of requirements provided in

deliverable D1.1 (Stakeholder Identification and Requirements for Toolbox, Scenario Process and

Policy Modelling) [Bicking et al., 2010]. The analysis of the OCOPOMO approach revealed that the

process to be supported by the ICT toolkit can be divided into the following main areas:

1. registration/login,

2. initiation,

3. working with the project,

4. collaboration,

5. scenario generation,

6. scenario analysis,

a. quantitative data analysis,

b. qualitative data analysis,

i. extraction of phrases from natural language descriptions,

ii. issue generation, generation of relations and relation clusters,

iii. expertise-based relation,

c. network visualisation,

7. policy modelling,

8. simulation,

9. validation and evaluation.

The following subsections demonstrate use cases in each of these recognised areas of actors‘

interaction with the system.

5.1. REGISTRATION

The registration and login procedure is presented in the following figure. To take part in the project

invited User needs to register by providing the following information about him/her: User name,

Email, Password, Code to avoid spam bots, and to accept general Terms and Conditions. Uninvited

user who wants to take part in the project can send request for invitation with a description of

himself/herself and his/her motivation. A review and approval process is needed in that case.

http://en.wikipedia.org/wiki/Unified_Modeling_Language

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Once a user registers he/she will be invited to provide a personal profile, which includes: his/her

personal information and contact details, topics of interest to him/her (in order to be notified about

new topics posted on the forum related to that processes), newsletter registration
125

. The user profile

information can be modified at any time by the profile owner. If a registered user wants to delete

his/her profile and stop being a registered member, he/she must/can do this in the system.

Only Users who accept invitation sent by Facilitator can register. Accepting an invitation means

clicking the link added to the e-mail with the invitation.

After the initial registration, members can login each time they wish to access the site by providing

their user name or email and password. In case of forgetting the password User can use password

reminder.

Figure 5 Use case “Registration”

125

 See also the user requirement T-30 as well as the definition of newsletter data object in section on

Information view.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

The system shall provide a personalized webpage for registered and logged in users, which is

customized according to the user‘s preferences. This means that the user 1) can choose which

information should be visible (events, news, forums, etc.) at which place on the webpage, and 2) the

interesting information is highlighted. The user has to be registered and logged in to see the

personalized webpage. The personalized overview does not replace the start page.

Use Case Diagram

Name
Registration/login

Related

Requirements
I-F-I1, I-F-I2, I-F-I3, I-F-I4, I-F-I5, I-F-I6

Goal in Context

The registration/login area enables Unregistered User to register and

create a profile. After completing the registration User can login

(use password reminder if needed), edit or delete profile and

personalize webpage.

Preconditions The user has to be invited.

Successful End

Condition
The registration/login area is viewed and ready to be edited.

Failed End Condition The registration/login area is not rendered.

Primary Actors Unregistered User, Registered User

Trigger The User initiates registration or login.

Main Flow Step. Action

1. The invited User accepts the invitation.

2. The User can register.

2.1. Include: Create User profile.

2.2. Include: Gain Rights.

3. The uninvited User can send request for invitation.

4. Registered User can login on her/his profile by providing

his/her user name or email and password.

4.1. Extend: Remind Password. User can use password

reminder.

5. User can customize personalized webpage according to her/his

preferences.

6. User can edit his/her profile if needed.

7. User can delete his/her profile and stop being a registered

member.

Table 18 Description of the “Registration” use case

5.2. INITIATION

The use case diagram (Figure 6) illustrates the initiation of the project which includes the creation of a

collaboration space and the generation of the policy description. While creating the policy description

initiator (facilitator) develops text descriptions and uploads background documents referring to the

policy case. After this, the initiator (facilitator) invites users (both registered and unregistered users,

i.e. users who are not yet involved but who are identified as valuable contributors) and assign them

rights.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 6 Use case “Initiation of the Project”

Use Case Diagram

Name
Initiation of the project

Related

Requirements
T-5

Goal in Context

The Facilitator initiates the project by generation of the

collaboration space and policy description (upload of referring

documents and description of the policy case). The

initiator/facilitator invites users (registered and unregistered users)

and assigns them access.

Preconditions
1. The Facilitator must be registered at the system.

2. The Facilitator must be logged in.

Successful End

Condition

The project initiation is completed and users have access to the

collaboration space and documents.

Failed End Condition
The project initiation cannot be finished or Users do not have access

to the collaboration space.

Primary Actors Facilitator / Initiator

Trigger The Facilitator initiates new project.

Main Flow Step. Action

1. The Facilitator initiates a new project by selecting this

functionality in the system (he/she is automatically given all

rights).

1.1. Include: Create collaboration space. The system/platform

creates a unique collaboration space for the project

automatically when the Facilitator initiates a project.

2. The Facilitator generates description, including:

2.1. Include: Create text description. The Facilitator can create

text description of the project. This description includes

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

the creation of the following information:

2.1.1. Name: Name of the project e.g. ―Open collaboration

for policy modelling‖

2.1.2. Abbreviation: Abbreviation of the project for easier

communication e.g. ―OCOPOMO‖

2.1.3. Description: Textual description of the project.

The system provides a form which supports the Facilitator

in providing this information.

2.2. Include: Upload documents. The Facilitator uploads

corresponding documents.

3. The Facilitator invites users, which will be allowed to view the

project:

3.1. Include: Invite registered users. In order to invite

registered users, the Facilitator can select users from a list.

It is also possible to search for users by name and/or e-

mail.

3.2. Include: Invite unregistered users. The Facilitator can

invite new users to cooperation. Therefore the Facilitator

can add e-mail addresses to a list of to be invited users.

After confirming the ―invitation‖, the system sends an e-

mail to each user proposed by the Facilitator. The e-mail

contains an automatically generated text describing

OCOPOMO and the project initiated by the Facilitator. In

addition, the e-mail contains a link, which directly leads

the user to the project either to a log-in or to registration

web page. After log-in the user is directed to the

collaboration space of the project.

3.3. The Facilitator assigns particular rights to the users. When

inviting particular users (registered as well as unregistered)

the Facilitator can already assign further access rights to

them (i.e. write, invite).

Table 19 Description of the “Initiation of the Project” use case

After completing the initiation process users gain access to the collaboration space, which will be

customized for the project within the platform.

5.3. WORKING WITH THE PROJECT

The next use case diagram (Figure 7) illustrates the process of working with the project and it

describes those activities, which are possible with a project.

The Facilitator/Authorised User can update the initial description of the project by uploading and

removing documents as well as revising initial text description. Moreover, he/she can invite additional

users and assign them rights. The Facilitator and Authorised User can change access rights of users at

any time.

The registered users can only update the existing description of policy case.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 7 Use case “Working with the Project”

Use Case Diagram

Name
Working with the project

Related

Requirements
*

126

Goal in Context

The use case starts when a project has been initiated by Facilitator.

The Facilitator and Authorised Users are able to update the

descriptions and to add new ones. Moreover he/she can invite and

assign access rights to users. Registered users can review and

update documents and description provided by Facilitator.

Preconditions

1. The Facilitator and User must be registered at the system.

2. The Facilitator must be logged in.

3. The User receives the view of the data according to the rights

he/she owns.

4. The User can work on the data according to the rights he/she

owns.

Successful End

Condition

Facilitator and Authorised Users could manage the users and their

rights as well as run the project (revise the description).

Failed End Condition
The description cannot be changed, users cannot be invited or rights

cannot be changed/allocated.

Primary Actors Facilitator/Authorised User, Registered User

Trigger The User or Facilitator/Authorised user works with a project.

Main Flow Step. Action

1. The Facilitator or authorised users can update initial

description, including:

126

 If a use case (here as well as below) is not backed up by already defined user requirements, then at least one

new user requirement will be defined.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

1.1 Include: Revise text description. The Facilitator can revise

text description of the project. This description includes the

creation of the following information:

a. Name: Name of the project e.g. ―Open

collaboration for policy modelling‖

b. Abbreviation: Abbreviation of the project for easier

communication e.g. ―OCOPOMO‖

c. Description: Textual description of the project.

d. The system provides a form which supports the

Facilitator in providing this information.

1.2 Include: Upload document. The Facilitator uploads

additional documents.

1.3 Include: Remove document. The Facilitator removes

selected documents.

2. The Facilitator and authorised Users can invite users, which are

allowed to view/edit the project.

3. The Facilitator and authorised users are able to change access

rights.

4. The Facilitator and authorised users are able to assign access

rights.

5. The Registered User, after invitation, can revise description of

the project.

5.1 Include: Upload document. The Registered User uploads

additional documents.

Table 20 Description of the “Working with the Project” use case

5.4. COLLABORATION

The collaboration space is available on-line both for facilitators and end users (Figure 8). The role of

the ICT toolbox will be essential for supporting contextual social knowledge exchange and seamless

interaction within a complex virtualized world, where users are in the foreground, at the centre of all

attentions, while supporting technologies operate in the background, almost invisible.

Registered users are able, for example, to chat, use discussion forums, use help, search, ask facilitator,

use annotation system and change management option, create scenario, upload documents, open

simulation results, use opinion polling, view calendar and newsletter. The authorised user, on the other

hand, can create events in the calendar and publish newsletter.

The main features of collaboration space are depicted below.

Search engine

The search engine for facilitators shall help the facilitator to differentiate between relevant and

irrelevant documents/inputs (to find those which are relevant) and to show the status of the analysis of

the document (e.g. completed, partly completed and not yet started). Both users and facilitators can

look for a specific topic. A template of metadata will be provided to characterize the documents. The

metadata will then be used for searching for specific documents and contents.

Calendar

The calendar shows events related to the project in a well-arranged form on yearly, monthly, weekly

and daily base. Responsible users (with granted access rights) can enter an event to the calendar. The

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

calendar should have a function of sending a reminder about the event to all predefined users or

groups of users.

Change notification option

Change notification option informs the User about the changes in the project according to the rights

he/she has and his/her settings in profile (i.e. depending on the role the User has in the project).

RSS

All users can install RSS reader, to be able to check for new information, tasks, downloads on a

regular basis (e.g. during an unsynchronised scenario generation session) using system feed.

E-mail notification system

E-Mail notification system should provide an awareness mechanism (daily/weekly/monthly) allowing

participants to be informed on newly published or modified content in discussions, CMS, etc.

Opinion polling

Opinion polling tool should support definition of different types of questions and answers – e.g. multi-

choice questions, text-based inputs (answers), selection of a specific part on a map, selection of text

parts (fragments) in a text, etc. Authorised users are able to conduct an opinion poll and define the

users who are allowed to participate or to organize an open poll. Users can participate in the opinion

polls and they can change their opinion - answers provided before, i.e. they can produce a new version

of the filled in form. It is possible to support launching/closing the opinion polling according to the

defined setting (e.g. time interval, the number of participants, percentage of the filled in forms from

the whole group, etc). The opinion polling tool is able to produce a graphical output from the survey

results (using graphs, diagrams, etc.).

News

Authorized users can publish news and link them to other parts of the system. News is readable by all

users (no need to login). The news feature shall provide an overview about recent published news with

date and title, last modified elements notification, etc.

Discussion forum

Discussion forums support both moderated and non-moderated discussions. In the first case authorized

users (e.g. facilitator in case of the scenario building) can moderate a discussion within the discussion

forum. Contributions to the forum will be automatically published and the moderator is informed of

the new contributions. The moderator can decide to withdraw a contribution. The forum will be used

as a consultation tool to ask users about their opinions on specific issues. The discussion forum is

applied to enable a formal discourse on topics of interest extracted from the scenario in order to

advance it and to provide specific information on it. Within well-directed moderated discussion

forums stakeholders are consulted to express their opinions, recommendations and concerns regarding

completeness and assessment of desk research results. Discussion forums help to relate and advance

descriptions while stakeholders are discussing their opinions with other stakeholders. The system shall

publish rules for comments‘ moderation at the ―Rules for engagement‖ section in order to avoid the

accusations of censorship.

It is possible to organize discussion threads within forums in different types of order like

chronological or topic-based (hierarchical structure of threads, topics, and messages). In more details,

scenario building requires that contributions can be depicted structured through topics (i.e. several

discussions are possible at the same time concerning different topics of interest extracted from the

scenario) or chronologically (i.e. discussions to one topic should be in a chronological order).

In case of non-moderated discussions system shall publish the written comments automatically,

although the content administrator will be able to erase them at any moment.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Users are able to attach a relevance feedback to contributions in the discussion forum using a rating

scale (e.g. 2 – strongly agree, 1 – agree, 0 – neutral, -1 – disagree, -2 – strongly disagree) about the

content.

Chat

The chat is a feature in the collaboration space, which provides a text-based group chat embedded into

the collaboration space. The chat can be used by the users in order to discuss the project. Users can use

it without further log-in; they just need to select the functionality and can start writing. On one hand,

users have the chance to meet other users. On the other hand, the facilitator can arrange a time and

invite users to participate in a chat. To invite users, the facilitator can send a newsletter to the project

members.

Comment

Authorized users (e.g. facilitator in case of the scenario generation) can decide whether the content in

the system can be commented upon. Commenting should have always the same style, does not matter

what is commented. Users are able to comment most of the sources within the system.

Newsletter

Responsible users (with granted access rights) can create (publish) a newsletter and send it to the

subscribed users.

Figure 8 Use case “Collaboration Space”

Use Case Diagram

Name
Collaboration space

Related

Requirements

T-1, T-1-1, T-1-2, T-1-3, T-1-4, T-1-5, T-4; T-5, T-7, T-8, T-9, T-

10, T-11, T-12, T-14, T-24, T-28, T-29, T-30, T-34, I-1, I-5, I-6, I-

7, I-32

Goal in Context

The collaboration space allows the User to fully participate in the

project and facilitate the collaboration among Users providing tools

like calendar, newsletter, help, search tool, chat, discussion forum,

communication with Facilitator, opinion polling, annotation feature

and change management option and RSS. The collaboration space

gives access to all documents, scenario generation tool and results

of simulations. The Authorized User can add member, add event

http://en.wikipedia.org/wiki/Text-based
http://en.wikipedia.org/wiki/Chat_room

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

and publish newsletter.

Preconditions The User has to be authenticated and has particular rights.

Successful End

Condition

The ―collaboration space‖ allows the collaboration among users

within a project.

Failed End Condition The collaboration space elements are not rendered.

Primary Actors Registered User, Authorized User

Trigger The User opens collaboration space.

Main Flow Step. Action

1. The Registered User uses collaboration space during the

project, including:

1.1. Include: Use chat. The User can use a chat to

communicate with other users of the platform.

1.2. Include: Discussion Forum. The User can use forum to

communicate with other users of the platform.

1.3. Include: Use help. The User can use help and assistance

feature from every webpage of the system.

1.4. Include: Ask Facilitator. The User can ask facilitator

about the project or the system, etc.

1.5. Include: Use search. The user has access to search tool

to search text descriptions and uploaded documents.

1.6. Include: Install RSS reader. The User can set up RSS to

be able to check for new information and uploaded

documents.

1.7. Include: Use change management option. The User is

informed about the changes within the project according

to the rights he/she has and his/her settings in profile (i.e.

depending on the role the User has in the project).

1.8. Include: Vote (opinion polling). The User can take part

in opinion polls.

1.8.1. Extend: Create opinion poll. The authorised User can

create opinion poll.

1.9. Include: Upload documents. The User can upload

documents related to the project to database.

1.10. Include: Open simulation results. The User can check

project simulation results.

1.11. Include: Use Scenario Generation. The User can open

Scenario Generation tool.

1.12. Include: View Calendar. The User can check calendar of

project events.

1.12.1. Extend: Create events. The Authorized User can

add new events to calendar.

1.13. Include: Newsletter. The newsletter is delivered to the

User by e-mail.

1.13.1. Extend: Create and send Newsletter. The

Authorized User can create newsletter and send it to

the collaborating user group.

1.14. Include: News. The news is delivered to the User on-

line.

1.14.1. Extend: Create News. The Authorized User can

create news which is delivered to the collaborating

users.

2. The Authorized User can add new events to the calendar.

3. The Authorized User can create newsletter and send it to the

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

collaborating user group.

4. The Authorised User can create news which is delivered to

collaborating users.

5. The Authorised User can create opinion poll.

Table 21 Description of the “Collaboration Space” use case

5.5. SCENARIO GENERATION

In order to represent different views of stakeholders in a sensible way the users (authorised for this

activity) will generate scenarios. The initial scenario will be created by the initiator of a policy (user

authorised to initiate policy) process and modeller who can start new iteration of scenario generation

which will be published at the collaboration space (it will be opened for viewing and manipulation).

Stakeholder users will be allowed to express their views on the policy case via either further

elaboration on the initial scenario or by generating new (alternative) scenarios. When a scenario will

be closed or reopen by the facilitator, then involved stakeholders will receive information about this

action. Scenario extension and update shall include the opportunity to rate the scenario or parts of it, as

well as to discuss on the scenario. For supporting the latter, an annotation feature is needed.

Figure 9 Use case “Scenario Generation”

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Use Case Diagram

Name
Scenario Generation

Related

Requirements
I-2, I-3, I-4, I-10, I-11, I-13, I-14, I-15, I-19, I-22, T-25

Goal in Context

The scenario generation tool allows the Facilitator to manage

scenario process (i.e. create scenario as well as update, close and

reopen existing scenarios).

Scenario generation tool allows the user (with appropriate access

rights) to take part in scenario generation process (i.e. creating,

viewing and updating scenario).

Preconditions

1. The facilitator / the user must be registered at the system

2. The facilitator / the user must be logged in

3. The facilitator / the user receives only the view of the data

according to the rights he/she owns

4. The facilitator / the user can only work on the scenarios

according to the rights he/she owns

 the Facilitator can create scenarios as well as update, close

and reopen existing scenarios

 the User can create, view and update scenarios

Successful End

Condition

The collaboration space allows generating scenarios by the user and

managing the scenario generation process by the facilitator.

Failed End Condition

The collaboration space does not render the required

features/services for collaborative scenario building (writing and

discussing)

Primary Actors Facilitator, User

Trigger
The facilitator publishes the initial scenario and invites the users for

contributions thereby starting the scenario generation process.

Main Flow Step. Action

1. The Facilitator (or the User) can create new scenario, including:

1.1 Include: Publish. The Facilitator publishes new scenario.

1.2 Include: Announce. The Facilitator informs Users about

creation of new scenario.

2. The Facilitator (or the User) is able to create groups of

stakeholders to assure when needed group homogeneity in

scenario generation process.

3. The Facilitator (or the User) can open current scenario.

4. The Facilitator (or the User) can update current scenario,

including:

4.1 Include: Rate. The Facilitator and the Users can rate current

scenario.

4.2 Include: Discuss on scenario. The Facilitator and the Users

can discuss current version of scenario.

4.3 Include: Comment scenario. The Facilitator and the Users

are able to comment on current scenario.

The Facilitator manages scenario generation process:

5. The Facilitator can close current scenario;

5.1 Include: Inform users. The Facilitator informs Users about

closing the scenario.

6. The Facilitator can reopen scenario;

6.1 Include: Inform users. The Facilitator informs Users about

reopening scenario.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7. The Facilitator and the Users can save current work during

scenario generation process.

Table 22 Description of the “Scenario Generation” use case

5.6. SCENARIO ANALYSIS

The main activities of scenario analysis are summarized in related use case (see Figure 10). The

detailed steps to be performed subsequently are described in the following subsections: qualitative

data analysis, quantitative data analysis and network visualization. The export of the results of

scenario analysis shall be possible in XML to feed the result into DRAMS. Hence, an analysis tool

needs to provide the XML-Export.

Figure 10 Use case “Scenario Analysis - General Overview”

Use Case Diagram

Name
Scenario analysis – general overview

Related

Requirements
T-39, T-40

Goal in Context
The scenario analysis is conducted by the CAQDAS and the CCD

analysis tool.

Preconditions
1. The analyst must be registered at the system

2. The analyst must be logged in

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

3. The analyst receives the view of the data according to the rights

he/she owns

4. The analyst can only work on the data according to the rights

he/she owns

Successful End

Condition
The CAQDAS and the CCD are viewed and able to be used.

Failed End Condition

The CAQDAS and the CCD do not render the required

features/services, i.e. it delivers useless input for the simulation

model.

Primary Actors Analyst

Trigger

The first evidence-based stakeholder-generated user scenarios are

completed (available), so that the analyst can initiate the qualitative

data analysis.

Main Flow Step. Action

1. The Analyst starts analysis of scenario, including:

1.1. Include: Upload docs. The Analyst can upload additional

documents.

2. The Analyst enters quantitative analysis of documents.

3. The Analyst enters qualitative analysis of documents.

4. The Analyst enters network visualization in which all scenario

descriptions are mapped onto a network depending on the

query.

5. The Analyst exports the results of analysis to be imported into

DRAMS.

Table 23 Description of the “Scenario Analysis - General Overview” use case

5.6.1. Qualitative analysis of documents

Scenario analysis is mainly qualitative data analysis as scenarios are based on narrative texts. As the

process is complex and requires full understanding among OCOPOMO platform developers, we

decided to present all its parts in the detailed subsections (see Figure 11): extraction of phrases, issue

generation, generation of relations and relation clusters, expertise-based relations.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 11 Use case “Qualitative Data Analysis”

Use Case Diagram

Name
Qualitative Data Analysis (QDA) of natural language descriptions

Related

Requirements
T-40

Goal in Context

QDA of natural language descriptions (i.e. background documents

and evidence-based stakeholder-generated scenarios). CAQDAS

provides features to search, structure, organize, categorize, and

annotate textual data. The CAQDAS helps selecting and

categorizing phrases as well as managing the corresponding

metadata (i.e. insertion, revision and removal of metadata).

Preconditions

1. The analyst must be registered at the system

2. The analyst must be logged in

3. The analyst receives the view of the data according to the rights

he/she owns

4. The analyst can work on the data according to the rights he/she

owns

Successful End

Condition

1. The analyst receives the view of the data according to the rights

he/she owns in the CAQDAS/system

2. The analysts can work on the data according to the rights he/she

owns in the CAQDAS/system

3. The CAQDAS provides the features necessary to enable

analysts to analyse the qualitative data in order to deliver high

quality input for the CCD and the subsequent simulations

Failed End Condition
The CAQDAS does not render the required features/services, i.e. it

delivers useless input for the CCD and the simulation model.

Primary Actors Analyst

Trigger
Three cases may trigger the QDA:

1. The first background documents for the policy case are

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

available, so that the analyst can initiate the qualitative data

analysis.

2. The first evidence-based stakeholder-generated user scenarios

are completed (available), so that the analyst can initiate the

qualitative data analysis.

3. The first simulation-based scenario is available, so that the

analyst can initiate the qualitative data analysis.

Main Flow Step. Action

1. The Analyst can extract phrases from natural language

descriptions

2. The Analyst can generate issues

3. The Analyst can generate relations and relation clusters

4. The Analyst can insert expert relations

Table 24 Description of the “Qualitative Data Analysis” use case

5.6.1.1. Extraction of phrases from natural language descriptions

The qualitative analysis of documents starts with the elaboration of the text material, i.e. a relevant

text passage is highlighted, the text passage, called phrase, is processed and coded.

Figure 12 Use case “Extracting Phrases from Natural Language Descriptions”

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

To assure traceability the text material should be numbered consecutively by the line and paragraph to

determine the position of the phrase extracted (it enables immediate localisation of important text

passages and checking the broader context, in which an issue originally occurs). The code might be a

single word or an acronym (single character or a combination of characters) or a combination of

words.

The identified collection of text passages requires precise naming. Working within a team of people

may lead to different understandings of text passages, which challenges readability. Hence, it is

important that interim results are self-explanatory in order to facilitate a common understanding within

the team of analysts.

All possible use cases that are referring to the extraction of phrases are depicted in Figure 12.

Use Case Diagram

Name
Extracting phrases from natural language descriptions

Related

Requirements
T-39

Goal in Context
The tool allows for selection of phrases from natural language

descriptions.

Preconditions

1. The analyst must be registered at the system.

2. The analyst must be logged in.

3. The analyst receives the view of the data according to the rights

he/she owns.

4. The analyst can work on the data according to the rights he/she

owns.

Successful End

Condition
The CAQDAS is viewed and able to be used.

Failed End Condition
The CAQDAS does not allow extracting, coding and defining

phrases from natural language descriptions.

Primary Actors Analyst

Trigger

The analyst found a relevant text passage; hence he/she initiates the

extraction and coding of the phrase from natural language

description.

Main Flow Step. Action

1. The Analyst selects and views a natural language description

(i.e. either a background document or a scenario)

2. The Analyst goes through the text and highlights relevant text

passages (i.e. phrases)

3. The Analyst codes the phrase, including:

3.1. Include: Open menu and select Categorisation and Menu.

The Analyst can select phrase categorization and menu.

The CAQDAS sends the respective view to the Analyst

(i.e. opens a respective window to code the phrase) and

automatically inserts a link from the document to the data

base entry including the information where to find the

original text passage in which document.

4. The Analyst enters metadata of analyzed document.

4.1. Include: Store metadata. The metadata such as title and

description are stored.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

5. The Analyst can revise metadata of analyzed documents.

5.1. Include: Store metadata. The revised metadata are stored.

6. The Analyst can delete metadata.

Table 25 Description of the “Extracting Phrases from Natural Language Descriptions” use case

5.6.1.2. Issue generation

Subsequent step is the assignment of the phrases, identified in the different texts, to the right issue

avoiding multiplication of new issues. In doing so, tabs ought to set up to define the metadata and to

allow updating them. The title of the issue shall suggest the content and meaning of the issue, and be

restricted to the meaning of the phrases included. Hence, coding grounds the interpretation of the

analyst (i.e. codes cannot be generated automatically).

With a group of analysts it might be challenging to create a compromise on an issue title or abstract or

any other characteristics. Thus, it is necessary to be able to flexibly revise or delete the metadata

during the scenario analysis process.

All use cases related to issue generation are depicted in Figure 13.

Figure 13 Use case “Issue Generation”

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Use Case Diagram

Name
Issue generation

Related

Requirements
T-39

Goal in Context

The tool allows for selection of phrases from the list of phrases and

for enabling to either link phrases to existing issues or to create new

issues based on at least one phrase.

Preconditions

1. The Analyst must be registered at the system.

2. The Analyst must be logged in.

3. The analyst receives the view of the data according to the rights

he/she owns.

4. The analyst can work on the data according to the rights he/she

owns.

Successful End

Condition

The CAQDAS is viewed and able to generate new issues from

existing phrases and to link new phrases to existing issues.

Failed End Condition

The CAQDAS cannot be viewed.

The CAQDAS can be viewed but is not able to generate new issues

from existing phrases.

The CAQDAS can be viewed and is able to generate new issues

from existing phrases but not to link new phrases to existing issues.

Primary Actors Analyst

Trigger

The Analyst found a phrase, which is not similar to any of the

existing issues in the list; hence he/she generates a new issue based

on the phrase.

The Analyst found a phrase, which is similar to one of the existing

issues in the list; hence he/she links the new phrase to the existing

issue.

Main Flow Step. Action

1. The Analyst opens a list of phrases.

1.1. Include: Open list of issues. The Analyst opens the list of

issues.

2. The Analyst selects one phrase, which is not yet linked to an

issue.

3. The Analyst generates a new issue based on the phrase.

4. The Analyst links the selected phrase to an existing issue.

Table 26 Description of the “Issue Generation” use case

5.6.1.3. Generation of relations and relation clusters

Coding a text passage means to define the phrase by assigning a keyword to it and fixing its position

within the text. Different phrases (text passages) may concern the same matter, and, therefore, are

grouped into issues. Each issue represents a cluster of phrases of the same matter, i.e. it does not only

correspond to one specific phrase but the number of phrases referring to the same or to a very similar

matter. Issues represent a set of coded text passages (i.e. phrases) extracted from the investigated texts.

Accordingly, the list of issues is related to the list of phrases. Each issue consists of a number of

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

phrases (1 to n). The issue is linked via the code of each phrase to the corresponding phrases. As the

code of the phrases determines the text from which the phrase was extracted originally and the

position within the text, coding and clustering generates traceability. Traceability is very important to

avoid de-contextualisation. Each document comes up with new insights regarding the characteristics

of the issue. The issue becomes clearer with each new similar or contrary phrase discovered. If

necessary an issue is separated into several issues depending on the discoveries made based on the

phrases assigned to the issue. Overall, merging and comparison of phrases advance the definition of

the issue.

Relations among issues can be identified either by a text passage (i.e. phrase that is identified,

extracted and coded by the analyst) or by the expertise of the analyst.

Relations can be detected only as relations between phrases of two different issues. Several relations

among issues are possible. All relations identified between two different issues are clustered to

relation clusters according to their similar meanings. If at least two phrases of two different issues are

related with each other then at least one relation cluster exists. The relation between issues at the issue

level is therefore called relation cluster. Since a text-based relation always describes the relation

between two phrases of different issues, relation clusters between issues can be queried via the issue

itself as the phrases are included (i.e. linked via unique identifier to the issue) in the issue.

The use cases that refer to generation of relations and relation clusters are present in Figure 14.

Figure 14 Use case “Generation of Relations and Relation Clusters”

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Use Case Diagram

Name
Generation of relations and relation clusters

Related

Requirements
-

Goal in Context

The tool allows for selection of phrases from the list of phrases

thereby defining if the phrase is a relation among two other phrases.

Similar relations among the same two issues are clustered to

relation clusters.

Preconditions

1. The Analyst must be registered at the system.

2. The Analyst must be logged in.

3. The analyst receives the view of the data according to the rights

he/she owns.

4. The analyst can work on the data according to the rights he/she

owns.

Successful End

Condition

The CAQDAS is viewed and able to generate relations from

existing phrases and to cluster similar relations among the same two

issues to relation clusters.

Failed End Condition

The CAQDAS cannot be viewed.

The CAQDAS can be viewed but is not able to generate relations

from existing phrases.

The CAQDAS can be viewed and is able to generate relations from

existing phrases but not to cluster similar relations among issues to

relation clusters.

Primary Actors Analyst

Trigger

The Analyst found a phrase, which represents a relation among two

other phrases; hence he/she generates a new relation based on the

phrase.

The Analyst found several similar relations among the same two

issues; hence he/she clusters these similar relations among the same

two issues to relation clusters.

Main Flow Step. Action

1. The Analyst opens list of phrases.

2. The Analyst selects one phrase.

3. The Analyst generates a new relation based on the phrase.

4. The Analyst selects relations between phrases (i.e. similar

phrases among two issues).

5. The Analyst clusters the selected relations to a relation cluster.

Table 27 Description of the “Generation of Relations and Relation Clusters” use case

5.6.1.4. Expertise-based relations

Up to this step, the qualitative data analysis and the results extracted are easily traceable and replicable

as they are extracted from text, i.e. explicit knowledge. Further elaboration results in steady decrease

of traceability and replicability, because the subsequent interpretation of data bases mainly on the

knowledge of the experts, who are structuring, synthesizing and interpreting the material. As a

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

consequence, the management of issues and their interrelations became more complex. Figure 15

presents the use case diagram with expert users inserting relations between issues based on their

intrinsic knowledge.

Expertise-based relations are relations not explicitly mentioned in the documents but are based on the

expertise of the analyst. For the expertise of the specialist, which is intrinsic knowledge, no reference

can be given except an identifier to classify the analyst from whom the expertise comes from. To

enhance the quality of qualitative data analysis, relations have to be considered that are extracted from

text (i.e. scenarios) as well as those grounding on implicit expert knowledge. To make this difference

visible the distinction of both cases should be explicitly documented. This means, that the origin of the

relation (i.e. either implicit expert or explicit text knowledge) has to be stored as well to make this

distinction visible. Work on the content (i.e. metadata) needs to be done manually.

Figure 15 Use case “Inserting Expertise-based Relations”

Use Case Diagram

Name
Inserting expertise-based relations.

Related

Requirements
-

Goal in Context

The CAQDAS allows inserting relations between issues, which are

not derived from natural language description but from the expertise

of the analyst.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Preconditions

1. The analyst must be registered at the system

2. The analyst must be logged in

3. The analyst receives only the view of the data according to the

rights he/she owns

4. The analyst can only work on the data according to the rights

he/she owns

Successful End

Condition
The CAQDAS is viewed and can be used.

Failed End Condition
The CAQDAS does not allow inserting relations between issues

based on the expertise of the Analyst

Primary Actors Analyst

Trigger

The Analyst recognised the existence of relations between issues

which are not found in any natural text description, but which

he/she knows from his/her expertise.

Main Flow Step. Action

1. The Analyst opens a list of issues, including:

1.1. Include: Open relations. The Analyst can view expertise-

based relations.

2. The Analyst selects two issues (i.e. those issues between the

relation exists) and links them with the relation data entry to be

created.

3. The Analyst adds new expertise-based relations

3.1. Include: Enter metadata. The Analyst can enter metadata

related to relations.

4. The Analyst can edit relations between issues.

5. The Analyst can delete issue relation.

Table 28 Description of the “Inserting Expertise-based Relations” use case

5.6.2. Quantitative Analysis of Documents

The scenario analysis is supported by quantitative data analysis (i.e. statistics). During this process the

traceability of data is assured. The aim of quantitative analysis of documents is to advance the model

enriching it by facts and inferences about the subject under study. Related use cases are presented in

Figure 16.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 16 Use case “Quantitative Data Analysis”

Use Case Diagram

Name
Quantitative Data Analysis of documents

Related

Requirements
-

Goal in Context

Quantitative Data Analysis of documents (i.e. statistics) is to

improve the model through facts and to draw inferences about the

process or population being studied. The Quantitative Data Analysis

provides tools for prediction and forecasting using data and

statistical models (i.e. dealing with uncertainties through showing

probabilities).

Preconditions

1. The analyst must be registered at the system.

2. The analyst must be logged in.

3. The analyst receives the view of the data according to the rights

he/she owns.

4. The analyst can work on the data according to the rights he/she

owns.

Successful End

Condition
The document analysis tool is viewed and facilitates the analysis.

Failed End Condition

The Quantitative Data Analysis tool does not render the required

features/services, i.e. it delivers useless input for the CCD and

simulation models.

http://en.wikipedia.org/wiki/Statistical_model

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Primary Actors Analyst

Trigger

The first background documents for the policy case are available,

which are including quantitative data, so that the analyst can initiate

the quantitative data analysis.

Main Flow Step. Action

1. The Analyst selects and views the background document.

2. The Analyst goes through the document and highlights relevant

sections.

3. The Analyst codes the sections.

4. The Analyst enters metadata of analyzed section.

5. The Analyst can link the section (quantitative information) to an

existing issue.

6. The Analyst can revise metadata of analyzed documents.

7. The Analyst can delete metadata.

Table 29 Description of the “Quantitative Data Analysis” use case

5.6.3. Network Visualisation

Visualisation of dependencies shall be developed in order to visualize and distinguish between the

different types of results of scenario analysis and their relations or implications. The visualisation can

be either a network or a table. All use cases referring network visualization are depicted in Figure 17.

Figure 17 Use case “Network Visualisation”

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Use Case Diagram

Name
Network visualisation.

Related

Requirements
-

Goal in Context
The visualisation allows for presenting dependencies between

different kinds of results.

Preconditions

1. The analyst must be registered at the system

2. The analyst must be logged in

3. The analyst receives the view of the data according to the rights

he/she owns

4. The analyst can work on the data according to the rights he/she

owns

Successful End

Condition

The visualisation tool is viewed and can be used to visualise

network(s).

Failed End Condition
The visualisation tool is not rendered, the dependencies cannot be

inserted.

Primary Actors Analyst

Trigger
The Analyst recognised the existence of dependencies between

results.

Main Flow Step. Action

1. The Analyst downloads quantitative data analysis.

2. The Analyst downloads qualitative data analysis.

3. The Analyst selects results.

4. The Analyst creates network.

Table 30 Description of the “Network Visualisation” use case

5.7. POLICY MODELLING

At the start, the policy modeller needs to identify his/her goal. Later the policy modeller has to extract

stakeholders with their descriptions and develop the environmental rules and facts for the model. The

facts are elements that carry information, which is founded in a source. For example, actors as

depicted in the ―social network graph‖ are transformed into the policy model by describing those using

so called fact templates. The instantiation of an actor in a policy model (program code) is called a fact.

As not all facts relevant to the policy model can be explicitly found in text, such facts are known as

magic facts. These are based on the expert‘s intrinsic knowledge and do not have an explanatory

statement in the base texts.

In developing rules or inspecting rules, it is useful to be able to select one or more clauses and then

either fetch them (if all clauses are on the database) or retrieve them (if there are some clauses

involving calculation such as > or <). Useful if a rule that was expected to fire did not or if a new rule

is being implemented at a paused time step during a simulation.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

The data dependency graph, as another important element of the policy model, has been described.

The data dependency graph consists of rules and facts, i.e. the rule-dependency graph is extended with

the data elements (the facts).

At the end the rule dependency graph needs to be check for consistency and this should be done

automatically by appropriate software.

Figure 18 Use case “Policy Modelling”

Use Case Diagram

Name
Policy modelling

Related

Requirements

I-14, I-20, I-26, I-30, I-39, I-40; FR01_PM, FR02_PM, FR03_PM,

FR04_PM, FR05_PM, FR06_PM, FR07_PM, FR08_PM,

FR09_PM, FR10_PM, TP-1

Goal in Context

Functionality allowing the development of the model (i.e. agent

types, fact templates, Rule Dependency Graph, social networks) is

provided.

Preconditions

1. The Modeller must be registered at the system.

2. The Modeller must be logged in.

3. The Modeller receives the view of the data according to the rights

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

he/she owns.

4. The Modeller can work on the data according to the rights he/she

owns.

Successful End

Condition
The policy modelling tool is provided.

Failed End Condition The policy modelling tool is not rendered.

Primary Actors Modeller

Trigger The Modeller initiates policy modelling.

Main Flow Step. Action

1. The Modeller develops a set of agent types;

1.1. Include: Define abstract classes. The Modeller defines

abstract classes of agents.

2. The Modeller develops fact templates used in the model.

3. The Modeller develops rule.

3.1. Include: Develop conditions “If...” LHS. The Modeller

develops conditions ―If..‖,

3.2. Include: Develop actions ―then‖ RHS. The Modeller

develops actions ―then‖ used in the model.

4. Develop Rule/Data Dependency Graph. The Modeller creates

rules dependency graph of rules and data used in the model.

5. The Modeller creates social network of agents;

5.1. Include: Insert nodes. The Modeller inserts nodes of the

social network

5.2. Include: Insert relations. The Modeller inserts relations

between nodes.

6. The Modeller checks for cycles in RDG.

Table 31 Description of the “Policy Modelling” use case

5.8. SIMULATION

In the next step the modeller starts the simulation. At first it is essential to have a possibility to set up

initial rules, facts and parameters of simulation. After stopping the simulation the Modeller can restart

(to continue simulation from the last stop point) it or start again (to start simulation from beginning).

There is the practical difference between restarting and starting a simulation. While restarting, it is

possible to establish rules and experiment with them on the fly. After the simulation is stopped by

modeller manually or by reaching the end state, it is possible to preview all results, search for specific

events, and revise the settings. Starting the simulation in experimental run generates the output, which

will be used in evaluation of simulation.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 19 Use case “Simulation”

Use Case Description

Name
Simulation

Related

Requirements

I-18, I-20, I-24, I-27, T-16, T-19,T-20, T-22, T-23, FR11_PM,

FR12_PM, FR13_PM, FR14_PM, FR15_PM, FR16_PM,

FR17_PM, FR18_PM, FR19_PM, FR20_PM, FR21_PM,

FR25_PM, FR26_PM, TP-3, TP-5,

Goal in Context
The tool enables to run simulations including possibility to set

technical parameters, initial rules and facts.

Preconditions

1. The Modeller must be registered at the system.

2. The Modeller must be logged in.

3. The policy model is available.

3. The Modeller receives the view of the data according to the rights

he/she owns.

4. The Modeller can work on the data according to the rights he/she

owns.

Successful End

Condition

The simulation tool is viewed and can be used (to perform

simulations).

Failed End Condition
The simulation tool is not rendered and the simulation cannot be

performed.

Primary Actors Modeller

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Trigger The Modeller initiates simulation.

Main Flow Step. Action

1. The Modeller starts development of simulation in development

mode, including:

1.1. Include: Set technical parameters of simulation. The

Modeller defines initial parameters that are going to be

simulated.

1.2. Include: Set initial facts. The policy Modeller defines the

initial facts of the model.

1.3. Include: Set initial rules. The policy Modeller defines the

initial rules.

2. The Modeller can restart simulation.

2.1. Include: Revise settings: The Modeller uses different

configurations.

3. The Modeller can revise settings.

4. The Modeller stops simulation.

5. The Modeller can view results of simulation.

6. The Modeller can compare results derived from different

simulations.

7. The Modeller starts simulation in experimental run.

7.1. Include: Generate output. The Modeller generates output

of simulation, including:

7.1.1. Include: Publish output.

Table 32 Description of the “Simulation” use case

5.9. EVALUATION

For validation/evaluation, end users (e.g. stakeholders) need to access information generated by the

simulation model. Validation aims at checking the consistency and, precision of both evidence-based

user generated scenarios and simulation results. End users can comment and evaluate presented

simulation results. In case of any uncertainties end user can ask modeller.

During the evaluation users are able to play role-playing games using specifically designed user

interface, which will allow them to change all necessary aspects and parameters, together with taking

their decisions during the simulation steps. Playing games within policy modelling tool can be

performed in order to acquire knowledge about the system and learning how the simulation

works. The educative games will base on the simulations in which users will be allowed to change

parameters of the simulation and observe how the magnitudes of change influence the development of

the future states. The game should be interactive so the user is asked to make the decision every few

time steps of the simulation run.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 20 Use case “Evaluation of Simulation Results”

Use Case Diagram

Name
Evaluation of simulation results.

Related

Requirements

I-17, I-20, I-29, FR22_PM, FR23_PM, FR24_PM, FR27_PM, T-25,

T-32, T-33

Goal in Context
The tool enables the User to evaluate the simulation results, to use

gaming tool and to ask Modeller about details.

Preconditions

1. The User must be registered at the system.

2. The User must be logged in.

1. The output of experimental run of simulation is available.

2. The User receives only the view of the data according to the

rights he/she owns.

3. 4. The Modeller can only work on the data according to the

rights he/she owns.

Successful End

Condition
The tool is viewed and can be used.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Failed End Condition
The tool is not rendered and the User cannot see the model-based

scenario.

Primary Actors User

Trigger The User initiates evaluation process.

Main Flow Step. Action

1. The User views simulation results.

2. The User can view the user generated scenario related to the

simulation outcome.

3. The user can highlight part of the text.

Include: Comment on results. The User can express his/her

opinion.

4. The User can comment on the results of simulation.

5. The User can evaluate the simulation output.

6. The User can take the role of agent in the simulation (gaming

mode) and see how his/her behaviour influences the outcome of

the simulation.

7. The User can ask Modeller questions regarding the outcome of

the simulation.

Table 33 Description of the “Evaluation of Simulation Results” use case

5.10. NEW USER REQUIREMENTS BASED ON USE CASE ANALYSIS

Requirement ID: UC-1 Requirement Type: Functional Priority: Must-have

Name: Rights management

Description: The Initiator/facilitator can assign rights to users and modify them during the run of the

project. The initiator can assign other users the right to assign rights as well.

Measurement indicators: Available functionality.

Requirement ID: UC-2 Requirement Type: Functional Priority: Should-have

Name: Invitation – send and receive

Description: The authorised user can send an invitation to registered as well as unregistered user. The

invited User gets e-mail with a link which he/she should click if he/she wants to accept the invitation.

Measurement indicators: Available functionality.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Requirement ID: UC-3 Requirement Type: Functional Priority: Nice-to-have

Name: Send request for invitation

Description: Uninvited User who wants to take part in the project sends a request to the facilitator

with the description who he/she is and why he/she is interested in taking part in the project. The

request is in form of the template.

Measurement indicators: Available functionality.

Requirement ID: UC-4 Requirement Type: Functional Priority: Must-have

Name: Initiate project

Description: The facilitator is able to initiate a project. He/she is able to generate an initial description

of the project (name, abbreviation, and outline of the project) and upload relevant documents.

Measurement indicators: Available functionality.

Requirement ID: UC-5 Requirement Type: Functional Priority: Must-have

Name: Update initial description of the project

Description: The Facilitator and users can update initial description of the project in order to

extend/explain communicated information.

Measurement indicators: Available functionality.

Requirement ID: UC-6 Requirement Type: Functional Priority: Should-have

Name: Generation of relation

Description: The CAQDAS tool should provide the possibility to generate relations and relation

clusters in a manual way. When modeller finds in texts the relation between phrase A and B, where

phrase A and B belong to two different issues (i.e. phrase A belongs to issue A and the other phrase B

belongs to issue B) he/she selects phrases and generates relation. The phrase that describes the relation

between phrase A and B is also coded and linked to phrase A and B. The analyst can also select

relations between phrases and cluster relations.

Measurement indicators: Available functionality.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Requirement ID: UC-7 Requirement Type: Functional Priority: Should-have

Name: Expertise-based relation

Description: The CAQDAS tool allows inserting relations between issues, which are not derived from

natural language description but from the expertise of the Analyst. The Analyst opens the list of issues

and relations. Based on his/her expertise the Analyst selects two issues (i.e. those issues between the

relation exists), links them and adds new expertise-based relations. The Analyst can enter metadata

related to relations. At any time the Analyst can edit and delete relations between issues.

Measurement indicators: Available functionality.

Requirement ID: UC-8 Requirement Type: Functional Priority: Should-have

Name: Quantitative data analysis

Description: The Quantitative Data Analysis provides tools for prediction and forecasting using data

and statistical models (i.e. dealing with uncertainties through showing probabilities). The Analyst goes

through the document and highlights relevant sections, codes them and links the section (quantitative

information) to an existing issue. The Analyst can enter metadata of analysed section, revise it as well

as delete.

Measurement indicators: Available functionality.

Requirement ID: UC-9 Requirement Type: Functional Priority: Should-have

Name: Network visualisation

Description: The visualisation of network allows for presenting dependencies between different kinds

of results.

Measurement indicators: Available functionality.

Requirement ID: UC-10 Requirement Type: Functional Priority: Should-have

Name: Development of social network

Description: The development of social network requires extraction of actors, their relations,

interests, constrains, etc.

Measurement indicators: Available functionality.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

6. ARCHITECTURAL VIEWS AND PERSPECTIVES

In order to present designed architecture, a ―divide and conquer‖ approach is employed – the overall

architecture is described by a set of architectural views (each one representing a particular aspect of

the architecture) and perspectives (each one representing a particular quality property which is

orthogonal to the used views).

6.1. FUNCTIONAL VIEW

6.1.1. Design considerations

Client-server vs. service oriented architecture

Client and server are software entities which are in a close relationship. In any exchange

relation, the client initiates a request and the server responds adequately – it interprets a

communicated request and then attempts to fulfil it. Usually, a server can serve several clients.

On the other hand, service oriented architecture emphasizes design of architecture components

as modular services which can be searched for, discovered and utilised. Selected services

communicate using a standard communication scheme (e.g. SOAP-based or REST-based) to

exchange messages. Following this principle, services can be composed to form higher-level

services. As a result, this approach enables to produce highly flexible architecture types which

are ready for distributed deployment. Since the project has identified a relatively stable

understanding how required system functionality should be used to support users, the high

flexibility level provided by the service oriented architecture is not necessary. To reduce

overall complexity and effort connected with it, the project partners have opted for older and

simpler client-server architecture, which is fully sufficient for the project.

Two tiers vs. three tiers

Two tier architecture splits all the architecture into two separated layers. The most often,

presentation capabilities and application business logic are packed together into one tier while

the other tier is dedicated to managing and processing all data the application deals with. The

most compelling advantage of this architecture type is its simplicity and application

development speed. On the other hand, it works well in relatively homogeneous environments

only. Although more laborious, three tiers enable additional separation – the most often,

presentation capabilities are separated from business logic. The middle tier can play a role of

an intermediary centralising some functionality and providing it for different parts of the client

part of the architecture. Since the project tries to reuse different existing tools to meet as many

user requirements by them as possible, it is expected that the selected tools will form a

heterogeneous environment and therefore the three tier architecture has been selected. In

addition, finer granularity enables working on different system parts in parallel more easily.

Coupling vs. cohesion

In order to assess the quality of software architectures, different metrics have been designed,

measuring a wide range of parameters from coverage of functional requirements to

extensibility aspects. This includes the attributes coupling and cohesion as well. Coupling is

defined as the degree of connections between different system components (inter-component

links), while cohesion is the degree of relationship between the constituents of a system

component (intra-component links). A conventional wisdom is to minimise coupling and

maximise cohesion – to reduce interdependencies between system components to bare

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

essentials in order to keep coupling at the minimum level for maintainable and secure systems

(loose coupling) and pay for it with high cohesion. Recently, [Booch et al., 2007] suggests an

alternative - a ―functional cohesion‖, meaning that all the constituents work together to fulfil

one specific task. The OCOPOMO system architecture was indeed designed with a ―functional

cohesion‖ in mind, making the components as functionally self-contained as possible with a

very loose coupling between them.

Degree of centralisation

A special care has been taken to design an architecture in a way that minimizes the degree of

centralization inherent. There is not a single point of control defined in the prospective

OCOPOMO system. The logic of the presented design is a control structure spread across all

components, leading to an implicit (local) control structure(s). System components employ a

flexible communication model – if a software manager needs a service then it utilises a

manager providing the requested service. No centralised component deciding who should

communicate with whom and when is incorporated in the architecture.

6.1.2. Overall functional architecture

An overview of the overall architecture is given in Figure 21. The following subsections of this

document deal with a detailed description of all defined parts.

SCENARIO SUBSYSTEM

Document

Manager

COMMUNICATION SUBSYSTEM

Discussion

Forums

Manager

Chat

Manager

Annotation

Manager

Polling

and Rating

Manager

Calendar

Manager

Rule

Manager

Simulation

Manager

CORE

Search

Manager

Collaboration

Space

Manager

Concept

Manager

Notification

Manager

Link

Manager

User

Manager

DATA

Content Manager Version Manager

SIMULATION SUBSYSTEM

Process

Manager

Figure 21 Overall architecture of the OCOPOMO platform

The OCOPOMO system architecture consists of three main layers:

 TOOLS - layer of components which are responsible for work of particular tools within the

system and its functional user interfaces. This part can be also structured into three parts:

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

o Communication subsystem - functionality that covers communication, collaboration

and cooperation-based features of the platform. These tools are able to support also

other subsystems with their features (as they are not directly related to policy

modelling process in OCOPOMO).

o Scenario subsystem - functionality that fulfils scenario generation and analysis part of

the policy modelling process in OCOPOMO (other functionality from communication

subsystem could be also used, but essential are those for scenario creation and

analysis).

o Simulation subsystem - functionality which is important for modellers in order to

create, update, visualize and execute simulation models (agents, rules, etc.) within the

OCOPOMO platform.

 CORE - subsystem called the OPOCOMO Core is dedicated to processing all the data in the

system and supporting the tools layer with any business/data logic related to project resources,

metadata and processes, as well as to support functionality (business logic and user interface)

which has wider scope as an individual tool and more aspects should be combined there (e.g.

federated search, system wide notification, process/space initiation, user profile management,

etc.).

 DATA - data-level of architecture which is responsible for managing of storage and sharing of

particular content and its versioning.

The presented layers can be mapped onto a standard three tier structure in the following way: CORE

managers together with subsystems‘ managers correspond to the middle tier (usually called business

logic tier), user interfaces of subsystems‘ and CORE managers correspond to the upper tier (usually

called presentation tier), and DATA managers correspond to data tier.

Discussion Forums Manager

Short description Responsible for providing discussion forum functionality

(through a collaboration space) within the OCOPOMO

system.

Expected functionality Creation, editing and deleting of discussion forums,

threads (topics) and messages with rating/tag and

notification functionality reused.

Input/output components Collaboration Space Manager, Search Manager,

Notification Manager, User Manager, Polling and Rating

Manager, Content Manager, Chat Manager.

Table 34 Discussion Forums Manager

This part of the system is responsible for off-line communication based on the discussion forums

functionality, which can be used within the collaboration space of the OCOPOMO system. Basic

functionality includes possibility to create new forums, threads (topics) and messages, as well as edit

and delete them. Discussion forums are part of the collaboration space and specific process, therefore

important connection is to Collaboration Space Manager. Search within discussion forums is

supported by the Search Manager. Rating functionality is reused for discussion evaluation (relevance

feedback) and analysis, where Polling and Rating Manager is helpful. In case of need for notification

support with different channels (e.g. email notification, RSS, news, newsletter) Notification Manager

is reused. User Manager provides particular access rights for any actions within the manager. For

storage and retrieval of manager-specific data Content Manager is used for content repository

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

functions. Chat Manager is able to reuse discussion forums functionality to create off-line discussion

after finishing chat session.

Chat Manager

Short description Responsible for providing chat functionality (through a

collaboration space) within the OCOPOMO system.

Expected functionality Creation of (context-specific) chats, save history of chat

as a document, adding messages to chat, create

discussion forum related to chat (on demand).

Input/output components Collaboration Space Manager, Document Manager,

Discussion Forums Manager, Search Manager, User

Manager.

Table 35 Chat Manager

This part of the system is responsible for on-line communication based on the chat functionality,

which can be used within the collaboration space of the OCOPOMO platform. Basic functionality

includes possibility to create new chat (in a specific context) and add messages into chat.

Collaboration Space Manager provides standard connection to shared collaboration space and

process-specific data. Document Manager is used for saving of chat‘s history as a document. Search

within chat is supported by the Search Manager. Users are also able to create discussion forums

related to the chat, where communication can continue in off-line mode using Discussion Forums

Manager. User Manager provides particular access rights for any actions within the manager.

Calendar Manager

Short description Responsible for providing shared calendar functionality

(through a collaboration space) within the OCOPOMO

system.

Expected functionality Adding, editing and removing events (which are process

or context specific) in shared calendar, reminder

functionality (reused notification).

Input/output components Collaboration Space Manager, Notification Manager,

User Manager, Search Manager, Content Manager.

Table 36 Calendar Manager

This manager is responsible for coordination-like functionality – shared calendar and agenda, which

can be used within the collaboration space of the OCOPOMO system. Basic functionality includes

adding, editing and removing shared calendar events (process or context specific). Calendar is a part

of the collaboration space and specific process, therefore important connection is to Collaboration

Space Manager. Search within calendar events is supported by the Search Manager. In case of need

for notification support (e.g. reminder functionality) Notification Manager is reused. User Manager

provides particular access rights for any actions within the manager. For storage and retrieval of

manager-specific data Content Manager is used for content repository functions.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Polling and Rating Manager

Short description Responsible for providing polling and (in more general

way) rating functionality (through a collaboration space)

within the OCOPOMO system.

Expected functionality Creation and managing of polls, rating API and user

interfaces for different types of objects available for other

components (e.g. discussion forums).

Input/output components Collaboration Space Manager, Discussion Forums

Manager, Content Manager, Notification Manager, User

Manager.

Table 37 Polling and Rating Manager

This part of the system is responsible for the creation of polls and rating functionality, which can be

reused within the system. Basic functionality includes creation and managing of polls as a part of the

collaboration space and specific process (connection to Collaboration Space Manager). Rating

functionality, also managed by this component, can be reused (as API and user interface fragments)

for different objects within the system, especially for Discussion Forums Manager. User Manager

provides particular access rights for any actions within the manager. For storage and retrieval of

manager-specific data Content Manager is used for content repository functions. Notification

functionality, provided by Notification Manager, is used for announcing of polls and their results.

Document Manager

Short description Responsible for providing content management

functionality (through a collaboration space) within the

OCOPOMO system, mostly for scenario creation phase

of the process and linking of conceptual models with

information from real documents.

Expected functionality Creation, opening, deleting and tagging of documents,

inserting different resources into the system (as

documents of different formats and/or links to resources),

versioning of documents.

Input/output components Annotation Manager, Collaboration Space Manager, User

Manager, Search Manager, Content Manager, Version

Manager, Chat Manager, Notification Manager,

Simulation Manager.

Table 38 Document Manager

This manager is responsible for providing document management for users, which can be used within

the collaboration space of the OCOPOMO system, for any purposes of sharing resources and

information (data). Basic functionality includes creation, opening, deleting and tagging documents,

input of different resources into the system, all as a part of collaboration space (Collaboration Space

Manager). One of the main functions is also support of scenario generation and analysis, therefore

Annotation Manager is directly connected to this manager. Search within documents and resources are

supported by the Search Manager. User Manager provides particular access rights for any actions

within the manager. For storage and retrieval of manager-specific data Content Manager is used for

content repository functions. Version Manager is used for support of versioning functionality. In case

of need for notification support (e.g. reminder functionality) Notification Manager is reused. Other

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

components are also able to reuse document management (if needed), especially if they are connected

through collaboration space or policy modelling process.

Annotation Manager

Short description Annotation tool - transformation from unstructured text

(scenarios) to structured information (CCD - Consistent

Conceptual Description), important for policy modellers

in next steps of the process.

Expected functionality Open scenario (document), scenario analysis using

annotation tool, highlighting the text and creation of

specific objects (annotations), creation of relations

about/between the objects and their groups.

Input/output components Document Manager, Concept Manager, Link Manager,

Process Manager, User Manager, Search Manager,

Content Manager.

Table 39 Annotation Manager

This manager is responsible for one part of the process, where scenario is analysed and structured

information (suitable for modellers) is provided in a specific conceptual format. Basic functionality

includes opening the scenario, analysis using annotation tool, creation of specific objects

(annotations), creation of relations between objects and their groups, which are then a part of the

conceptual description about the current understanding of problem area. Search within the document

(scenario), annotations, relations and other relevant objects are supported by the Search Manager.

Relevant objects are reused and managed also within Concept Manager and Link Manager. Process-

specific functionality and current status is provided by the Process Manager. User Manager provides

particular access rights for any actions within the manager. For storage and retrieval of manager-

specific data Content Manager is used for content repository functions.

Rule Manager

Short description Mostly responsible for creation of fact templates, facts

and rules from CCD, which are then part of simulation

models.

Expected functionality User interface for creation of simulation model parts with

connection to CCD and particular data.

Input/output components Simulation Manager, Content Manager, Version

Manager, Concept Manager, Link Manager, User

Manager, Process Manager, Search Manager.

Table 40 Rule Manager

This manager is responsible for one part of the process, where from CCD (parts of the) simulation

models are extracted. User interface for evidence-based rules/agents creation and backward

understanding of current modelling status are some of the main functions. Process Manager is used

for process-specific operations and information. Search within the relevant resources (rules, agents,

models, concepts in CCD, links, etc.) is supported by the Search Manager. Relevant objects are reused

and managed also within Concept Manager and Link Manager. User Manager provides particular

access rights for any actions within the manager. For storage and retrieval of manager-specific data

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Content Manager is used for content repository functions, versioning support is provided by Version

Manager.

Simulation Manager

Short description Responsible for running simulation models and providing

results of the simulations.

Expected functionality Import/revision of simulation models, running

simulations (in different modes), evidence-based

inspection of models from rules to CCD and documents

according to simulation results, creation of results (text-

based, statistics, etc.).

Input/output components Rule Manager, Concept Manager, Link Manager, Process

Manager, User Manager, Content Manager, Version

Manager, Document Manager.

Table 41 Simulation Manager

This manager is responsible for simulation part of the process, where simulation models are used in

simulations and results of simulation are analysed. Simulation models can be imported and revised

with the help of Rule Manager and evidence-based inspection using Concept Manager and Link

Manager. Process Manager is used for process-specific operations and information. User Manager

provides particular access rights for any actions within the manager. For storage and retrieval of

manager-specific data Content Manager is used for content repository functions, versioning support

for models is provided by Version Manager. Document Manager is used also for storage of documents

created within simulations (results – text-based, statistics, etc.).

Search Manager

Short description Component which provides (federated) search within the

OCOPOMO system or partial searches in different

resources (where needed).

Expected functionality Provides search in particular resources (documents,

forums, CCDs, etc.), individually or as a federated

search, with or without tags, versions, process-specific

information, etc.

Input/output components Document Manager, Collaboration Space Manager,

Discussion Forums Manager, Chat Manager, Calendar

Manager, Annotation Manager, Concept Manager, Link

Manager, User Manager, Process Manager, Content

Manager, Rule Manager.

Table 42 Search Manager

This manager provides widely shared functionality within the OCOPOMO system – search for

different type of data, metadata, content objects, etc. It is possible to combine more searches into one

output or use partial searches within specific components (Document Manager, Collaboration Space

Manager, Discussion Forums Manager, Chat Manager, Calendar Manager, Annotation Manager,

Concept Manager, Link Manager, etc.). User Manager provides particular access rights for any

actions within the manager. Process Manager is used for process-specific operations and information.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

For storage and retrieval of manager-specific data Content Manager is used for content repository

functions.

Collaboration Space Manager

Short description Responsible for managing collaboration space where all

communication aspects (sharing of documents, forums,

chat, polls, etc.) are connected and shared together using

one shared space.

Expected functionality Creation of collaboration space (CS), management of

members in CS, adding objects into space (by specific

tools), opening objects within space, preference-based

starting view of CS, and search in CS, notification

features within space (e.g. RSS, hints, news, etc.).

Input/output components Document Manager, Process Manager, Discussion

Forums Manager, Chat Manager, Calendar Manager,

Polling and Rating Manager, Notification Manager,

Search Manager, Content Manager, User Manager.

Table 43 Collaboration Space Manager

This manager provides shared collaboration space within the OCOPOMO platform, especially

communication utilities (Discussion Forums Manager, Chat Manager, Calendar Manager, Polling

and Rating Manager), sharing documents (Document Manager) and management of members of

shared space. User Manager provides and sets up particular access rights for any actions within the

manager. Process Manager is used for process-specific operations and information. For storage and

retrieval of manager-specific data Content Manager is used for content repository functions.

Notification functionality, provided by Notification Manager, is used within collaboration space for

publishing news, hints and providing RSS feed(s). Search within the collaboration space elements,

relations and other relevant objects are supported by the Search Manager.

Notification Manager

Short description Responsible for notification services within the

OCOPOMO system, where any necessary information

(by other components of collaboration space) could be

provided using selected channel(s) like news, hints,

newsletter, RSS feed inputs or email.

Expected functionality Preparing notification message, selecting of channel(s)

and execution of notification service.

Input/output components Document Manager, Process Manager, Collaboration

Space Manager, Discussion Forums Manager, Calendar

Manager, Polling and Rating Manager, User Manager.

Table 44 Notification Manager

This part of the system is mainly responsible for providing its own functionality – preparing

notification messages, selecting channel(s) and publishing (executing notification service) – to other

components (e.g. Document Manager, Collaboration Space Manager, Discussion Forums Manager,

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

etc.). User Manager provides and sets up particular access rights for any actions within the manager.

Process Manager is used for process-specific operations and information.

Process Manager

Short description Responsible for managing workflow of the whole process

for policy modelling in OCOPOMO (from initiation

through scenario building and analysis to modelling and

simulation).

Expected functionality Control of current process status within policy modelling

process, changing steps within process, responsible for

sharing process-specific data with other components for

issues like process status, necessary requirements for

finishing/changing current step, process-specific changes

of access rights for users, notification of process-specific

changes, process steps versioning.

Input/output components Collaboration Space Manager, User Manager,

Notification Manager, Content Manager, Version

Manager, Annotation Manager, Rule Manager,

Simulation Manager, Concept Manager, Link Manager,

Search Manager.

Table 45 Process Manager

This manager is responsible for managing process steps for the OCOPOMO process of policy

modelling. It is important for controlling process current status, changing steps, sharing data

regarding process (Collaboration Space Manager), notification of changes (Notification Manager),

reuse/sharing of process-specific data and information in all other components (Annotation Manager,

Rule Manager, Simulation Manager, Concept Manager, Link Manager, Search Manager, etc.). User

Manager provides and sets up particular access rights for any actions within the manager. For storage

and retrieval of manager-specific data Content Manager is used for content repository functions.

Version Manager is used for support of versioning functionality for process steps and resources.

Concept Manager

Short description Responsible for managing structured conceptual

descriptions of modelled problem (CCD).

Expected functionality Creation of CCD elements and updating current

structure, definition of metadata templates, storage,

retrieving and visualisation of descriptions, export

specific formats, versioning descriptions.

Input/output components Content Manager, Version Manager, Process Manager,

Link Manager, Annotation Manager, Rule Manager, User

Manager, Simulation Manager, Search Manager.

Table 46 Concept Manager

This manager is responsible for managing structured information about the currently modelled

problem known as CCD (conceptual descriptions which leads to simulation models). Basic

functionality includes creation of CCD elements, updating structure, definition of structure of data, as

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

well as storage, retrieval, visualisation and versioning them. Annotation Manager is using concept

creation for explicit identification of structure in scenarios and data. User Manager provides and sets

up particular access rights for any actions within the manager. Process Manager is used for process-

specific operations and information. For storage and retrieval of manager-specific data Content

Manager is used for content repository functions. Version Manager is used for support of versioning

functionality for concepts in CCD. Link Manager and Rule Manager are directly connected to this

structure information, therefore are also important and communicate with this manager. Search within

the relevant resources (concepts in CCD) is supported by the Search Manager. Concepts are also

available to Simulation Manager for evidence-based analysis of simulations.

Link Manager

Short description Responsible for linking the evidence-based information

within the OCOPOMO process.

Expected functionality Creation of links (connection of information elements)

between document parts and CCD elements, CCD

elements and rules/simulation models, as well as

extracted simulation results. Possibility to retrieve link

connection structure between selected elements in order

to achieve evidence-based explanations and better

understanding of simulation results, scenario analysis and

policy modelling issues.

Input/output components Content Manager, Version Manager, Process Manager,

Concept Manager, Annotation Manager, Rule Manager,

User Manager, Simulation Manager, Search Manager.

Table 47 Link Manager

This manager is responsible for managing links between information about the currently modelled

problem from evidence-based and CCD elements to rules, agents and simulation models (and their

results). Basic functionality includes creation of links and retrieving of them for explanations in

simulation analysis (starting from Simulation Manager) and policy modelling updates. Annotation

Manager is needed for connection of concepts within structured data (as a part of the evidence-based

linkage). User Manager provides and sets up particular access rights for any actions within the

manager. Process Manager is used for process-specific operations and information. For storage and

retrieval of manager-specific data Content Manager is used for content repository functions. Version

Manager is used for support of versioning functionality for links. Concept Manager and Rule

Manager are directly connected to this linking information, therefore are also important and

communicate with this manager. Search within the relevant resources (links between concepts in

CCD, data, agents, rules, etc.) is supported by the Search Manager.

User Manager

Short description Responsible for managing users, roles, profiles and their

access rights within the OCOPOMO platform.

Expected functionality Creation of users, managing their roles and profiles,

managing access rights (with direct connection to current

process status), providing access rights to other

components.

Input/output components Process Manager, Annotation Manager, Document

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Manager, Discussion Forums Manager, Chat Manager,

Calendar Manager, Polling and Rating Manager,

Simulation Manager, Rule Manager, Collaboration Space

Manager, Search Manager, Concept Manager, Link

Manager, Notification Manager.

Table 48 User Manager

This part of the system has several main functions like creation of new users, managing their roles and

profiles, and managing access rights with their provision to other components. All components from

the first two levels are connected to this manager (see ‗Input/output components‘ sections) and reuse

user-specific information (access rights), Process Manager is most important for changing access

rights during the process execution. Access rights are not needed on the bottom level (content

repository and versioning), because these are not used directly by users (but components) and access

rights have already been checked by caller functions of particular components.

Content Manager

Short description Responsible for managing specific content (like

conceptual descriptions, metadata for search, specific

types of documents, links between conceptual elements,

etc.) within the OCOPOMO platform.

Expected functionality Directly managing necessary content storage and

retrieval from the repository for different purposes

(creation of conceptual descriptions, links, metadata,

search in different content, managing of process-specific

data) and types of resources, usage of versioning support

(through Version Manager).

Input/output components Document Manager, Version Manager, Collaboration

Space Manager, Discussion Forums Manager, Calendar

Manager, Polling and Rating Manager, Annotation

Manager, Concept Manager, Link Manager, Rule

Manager, Simulation Manager, Process Manager, Search

Manager.

Table 49 Content Manager

This manager is responsible for managing content storage and retrieval from the content repository for

different types of data, which are necessary within the OCOPOMO platform. Therefore many

components are using content repository for storing and retrieving of such specific data like links,

concepts, metadata, searches, process-specific data, etc. (see ‗Input/output components‘ sections).

Version Manager is used for the support of versioning functionality for content repository elements.

Version Manager

Short description Responsible for versioning different data resources

within the OCOPOMO platform.

Expected functionality Versioning content repository objects of different types,

updates of new versions, managing versions of content

repository resources, use of versioning for other

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

components.

Input/output components Content Manager, Document Manager, Process Manager,

Concept Manager, Link Manager, Rule Manager,

Simulation Manager.

Table 50 Version Manager

This part of the system is responsible for versioning different data resources. The main responsibility

is to support Content Manager and its content repository with versioning support. Moreover, several

components are able to use versioning directly for their elements (if it is needed) like process-specific

data (Process Manager), documents (Document Manager), concepts and links for structured CCD and

semantic links between evidence-based data and policy modelling elements (Concept Manager, Link

Manager), as well as versioning of simulation models and their parts (Simulation Manager, Rule

Manager).

6.2. INFORMATION VIEW

The information view describes the means of storage, maintenance, and distribution of information

through the system architecture [Rozanski and Woods, 2005]. It particularly includes the identification

of expected information types, data sources and their mutual relationships within the system, analysis

and specification of nature, content, structure, and ownership of the data produced or consumed within

the system.

The design of information view is based on the analysis of user requirements, which indicates an

initial distribution of information resources and data flows. Considerations of the selected technology

platform, design approach, and expected information types scaffold the information structure from a

global perspective. The data architecture, based on the analysis and assumptions, includes the

specification of data objects and their relations, information flow of dynamic data transformations, as

well as the scope of data access for particular actors during the system runtime.

User requirements were specified in [Bicking et al., 2010] mostly from usability and functionality

perspectives. However, practically all the requirements imply a presence of some data structures and

information resources, which should be properly represented in the architecture design. A detailed

analysis of provided user requirements towards the specification of information resources and data

objects is presented in Appendix D.

6.2.1. Design considerations

Web-based client-server application

The OCOPOMO system will be designed as a web-based application (see, for example, the

requirement I-1 [Bicking et al., 2010]), which typically consists of three layers: portal-based

user interface, business logic, and data layer. The design provided in the information view of

architecture will be focused on the data layer structures and the respective objects

(components, information resources) will be proposed for the business logic layer.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Object-oriented design

The design of the data architecture will follow the principles of the object-oriented design

[Coad and Yourdon, 1991]. This advantageous approach is almost exclusively used for client-

server applications, because it enables a logical separation of particular system components,

their relations and interfaces. The basic design element is a data object, which is characterised

by a set of properties (attributes). Data objects are related to each other by data transformation

interfaces. The properties of objects can be inherited, so that the data objects can be organised

in a generalisation hierarchy.

Structured vs. unstructured data

The distinction of the data structure affects the representation physical storage of data objects.

Structured or semi-structured data can be represented and stored in (relational or object-

oriented) databases, XML-like files or ontologies, and can be retrieved effectively by a

standardised query language. Unstructured data such as documents and various multimedia

files need to be stored and managed in special repositories. Their maintenance often includes

text or metadata pre-processing, heuristic parsing, and indexing of the data content. The

unstructured information is then available by querying the index by means of a specialised

query language or interface.

Application-specific data vs. meta-data

According to the proposal provided in section 3.5.2, the OCOPOMO platform will be built

upon the Alfresco / Alfresco Share framework and will reuse several third-party systems or

components for partial functionality of policy modelling, scenario generation, and e-

participation. The application-specific data are already defined in these components and the

overall data architecture should reflect them. Contrary, the meta-data are under full control of

the OCOPOMO system designers and can also be used to customise the third-party

components by adding some information specifically required for the OCOPOMO platform.

6.2.2. Overall data architecture

The identification of information resources and respective data objects is mainly based on the

requirements defined by OCOPOMO user partners in [Bicking et al., 2010]. According to this

analysis, the following types of basic information resources have been identified:

 CSM-IR: Content and semantics management;

 ePart-IR: e-Participation objects and tools;

 NS-IR: Narrative scenarios and related CCD;

 SM-IR: Simulation models;

 UMS-IR: User management and security;

 DR-IR: Centralised data repository.

Each of these information resources can be further divided into a set of data objects - elementary

building blocks of the data architecture. The design of data objects was initially accomplished during

the analysis of user requirements analysis; then it was enhanced and updated according to the findings

provided in system functionality descriptions and use cases. The resulting schema of information

resources, data objects and their structural correlations is depicted in the following figure. The

description of data objects for particular information resource types is presented in the following

paragraphs of this section.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 22 Architecture of information resources and data objects

CSM-IR: Content and semantics management

The CSM-IR represents data structures and resources that handle the collaboration process of policy

modelling (i.e. the workspace - social network environment, workflow and document flow sequences),

store, manipulate and semantically enhance the textual content of artefacts (i.e. index, textual data

analysis, semantic knowledge model, context, etc.). The CSM-IR is composed of the following data

objects:

 Content management: a general system for storage and maintenance of all artefacts required

for the OCOPOMO functionality. Provides a technical environment for storage, version

control, access, and publishing documents and other materials produced during the policy

model development; provides and manages e-participation tools and related objects; provides

the social network environment for collaborative work of involved system users.

 Workspace - social network environment: a collaborative space of e-participation objects and

social network structures, which is shared by involved users. The workspace, which allows

sharing ideas, materials, and information between users, forms a collaborative environment

focused on the development of a suitable policy model (i.e. described in corresponding

scenario and supported by respective simulations).

 Workflow: a representation of pre-defined workflow sequences (or a more complex structures)

of tasks and activities performed by involved users on various e-participation objects. The

goal of the process represented by the workflow is to organise steps and actions towards

successful collaborative development of the policy model.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Task: a data representation of a single action, which a user (process actor) performs on an e-

participation object; may include various task properties such as required inputs or

preconditions, produced outputs or effects.

 Document flow: a structure that describes the exchange of documents (supporting materials)

between the actors involved in particular tasks of the collaborative process.

 Context: a representation of a structure of relations (association links) between two e-

participation objects or their consequents - for example, between discussions and documents,

narrative scenarios and documents, scenarios and models, etc.

 Link: a (one-way) relation between two e-participation objects or their consequents (i.e. data

objects inherited from e -participation objects).

 Textual data analysis: data structures for text parsing, analysis, and annotation (tagging).

 Textual content: a text extracted from e-participation objects, represented in some of the

supported formats (preferably HTML, optionally TXT, PDF, or DOC/DOCX).

 Text phrase: a portion (fragment) of text with a specified location and length. The phrase can

be a paragraph, sentence, one word or sequence of more words. Text phrase may be annotated

– semantically described by metadata tags, selected from a tag vocabulary.

 Metadata tag: a semantic element that describes the meaning of a text phrase.

 Tag vocabulary: a structure of semantic elements, specifically designed for an annotation of

text portions extracted from e-participation objects.

 Semantic knowledge base: underlying structure of semantic objects (concepts, relations, etc.),

which is capable to conceptually describe a domain of interest. According to the domain

complexity and capabilities required for building CCDs and/or creating text annotations, the

knowledge base can be represented as a simple hierarchy of concepts or may be organised into

a more advanced structure of topic maps or ontologies.

 Concept, Relation, Constraint, Axiom: a set of semantic objects of the knowledge base.

 Index: a generic data entity that provides storage and access means for structured data.

 Search index: a representation of full-text index of the textual content and meta-data of stored

e-participation objects. The search index provides a standard query language for quick and

effective retrieval of stored documents.

 Log index: a representation of the repository of log records generated by the OCOPOMO

system. The log index provides a query language for filtering and retrieving stored data

according to the input criteria.

ePart-IR: e-Participation objects and tools

The ePart-IR represents the data, objects and resources, which facilitate sharing materials, active

communication and information exchange between OCOPOMO users in a collaborative environment.

The ePart-IR is composed of the following data objects:

 e-Participation object: a generic and abstract data entity that encapsulates basic properties for

particular types of consequent data objects as document, discussion, etc. The properties

include a presence of textual content that may be annotated by metatags, availability of

contextual links, integration into workflow tasks and document flow sequences.

 Document: a single document persistently stored in the OCOPOMO system. The documents

are considered to be multimedia files with the content of various formats of the MIME

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

standard
127

. Physical storage of documents is maintained by the content management: the

content of documents is stored in a file structure, accompanied with properties, document

versions, search indexes, context links and metadata annotations.

 Template: a representation of a pre-defined pattern, according to which a document is created.

 Discussion: a complex data entity that includes structures for discussion forums, topics,

threads, and contributions.

 Chat: a representation of data structures for on-line communication.

 Opinion polling: a complex data structure for opinion polling, questions and available

question types, answers and reports on polling results.

 News: a representation of data structures for news messages.

 Commenting: a data object representing comments on e-participation objects (i.e. documents,

scenarios, etc.) or their text portions.

 Calendar: data structures for messages organised in date/time sequences (i.e. calendar events).

 RSS: a representation of data structures for RSS feed, i.e. for publishing frequently updated

content in a standard XML-based format.

 e-mail notification: a complex data structure for composition and distribution of e-mail

messages to the dedicated users, which is usually invoked by an event detected in the system

(for example, a new task was started in the workflow, a new version of scenario or simulation

model was generated, etc.)

 Newsletter: a data structure for composition and distribution of periodic messages to the users,

according to their preferences (i.e. daily / weekly / monthly, etc.). The newsletter is usually

published on the portal and, in parallel, distributed via e-mail.

 Audio / video transcription: a representation of means for transcribing the audio / video

sequences, produced by chat or similar multimedia communication channel, into written texts.

 Transcription table / rules: a schema or data structure for transcribing the audio / video

sequences into the format of written text.

NS-IR: Narrative scenarios and related CCD

The NS-IR covers the data and resources for manipulating with narrative scenarios and related CCD

structures, which are then used for transforming the scenarios to simulation models. The NS-IR is

composed of the following data objects:

 Narrative scenario: a generic data object that represents narrative scenarios. It is designed as a

sub-type of the Document object, which implies that the scenario has its textual content, may

have a context defined, can be included into a workflow, etc. Moreover, the scenario can be

transformed to a simulation model and can be modified by a simulation output, which is

represented by the Model output object.

 Scenario CCD: a structure of semantic objects (concepts, relations, etc.) that formally

represents the textual content of a narrative scenario. After the translation enabled by the CCD

mapping object, the CCD can be transformed to a respective simulation model.

 CCD mapping: a translation schema that allows converting a CCD structure to rules and

clauses of a corresponding simulation model. Information on the text phrases that were

transformed to the respective model parts is preserved during the transformation.

127

 MIME Media Types: http://www.iana.org/assignments/media-types/

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

SM-IR: Simulation models

The SM-IR represents the data and resources related to the creation and modification of simulation

models, including simulation games and outputs generated by a model. The SM-IR consists of the

following data objects:

 Simulation model: a data structure of a simulation model, which is a simplified abstract view

of the complex reality, logical representation of objects, phenomena, and processes. The data

structure of the simulation model includes properties such as content, expressed as a set of

rules (i.e. rule-dependency graph), state, versions (i.e. environmental aspects of the descriptive

scenario), assumptions (minimal set of assumptions the model should carry), etc.

 Model agent: a representation of an active entity that participates in a simulation model. The

behaviour and constraints of agents are described in the model by a structure of rules. System

users, according to their roles and permissions, may play a role of one or more agents in

running simulations.

 Model rule: a logical expression, usually in the IF-THEN-ELSE form, included in the content

of a simulation model. The rule consists of an ordered set of clauses.

 Rule clause: a logical object, part of the rule of simulation model. The clause may be derived

from the scenario CCD and thus it may be related to particular text fragment in the underlying

narrative scenario.

 Simulation: a representation of a ―model in action‖, i.e. a simulation model running with given

agents, upon specified inputs, parameters and conditions. The simulation parameters may

include, for example, a desired level of details, time scale, number of cycles, etc.

 Model event: a representation of events generated by the model during a simulation.

 Model output: a document, which is generated by the running simulation as output. The

generated document can be used as a specific model-based scenario, which then may affect

changes in the original narrative scenario and/or in the related CCD.

UMS-IR: User management and security

The UMS-IR provides structures for user management, authentication and authorisation data. It

includes user roles, profiles and preferences, access rights, credentials, etc. The UMS-IR is composed

of the following data objects:

 User management: a repository for all the data necessary for maintenance of system users and

their accounts. It, for example, includes a structure of users (given by properties, roles, or user

types), data for identity management, credentials and access rights, etc.

 User: a generic data object that represents particular actors interacting with the OCOPOMO

system, including the settings (properties) for user profiles, roles, and permissions.

 User profile: a storage place that contains user preferences (i.e. a customisation of the

Workspace, frequency of receiving newsletters or notifications, etc.), identification and

personal data, as well as an individual work of the user (i.e. private documents, temporary or

experimental models, alternative scenarios, etc.).

 User role: specifies rights, permissions, and competencies that the user may possess during

his/her interaction with the system (in the scope of a single Workspace). Available user roles

correspond to the actors identified previously (i.e. Facilitator, Modeller, Analyst,

Administrator, etc.). A list of corresponding permissions is provided as property of the user

role.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Permission: an allowance to perform particular action within the system, including proper

authorisation settings and credentials. Permissions are instantiated to the action types provided

by other OCOPOMO modules – for example, to moderate a discussion, to receive e-mail

notifications, to comment a scenario, to modify a simulation model, etc.

DR-IR: Centralised data repository

The DR-IR represents an integrated data storage place for the whole web-based system. It consists of

the following data objects:

 Data repository: a system of databases and file-based repositories, which stores the persistent

system data and provides an effective data access.

 Data connector: an object that provides for inner system components the means for

addressing, accessing, and retrieving proper data from the repository. Typically, it is the

connection string for relational databases or the root path for file-based repositories.

 System settings: global settings and environment properties such as e.g. supported language

versions, paths and URLs, location of client applications, etc. for a single installation of the

whole OCOPOMO system.

 Client application settings: the configuration data for web-based client-side tools and

applications of the OCOPOMO system. At the current state of the project, we can identify the

OCOPOMO administration tool for the overall system maintenance and the client-side

interface providing all the policy modelling functionality for dedicated users (see Figure 23).

 The configuration data may then include such information as, for example, location of data

resources, mode of operation, etc.

6.2.2.1. Information flow

The information flow, as a part of the architecture design, represents an information and data exchange

between main system components. The design of the OCOPOMO information flow is based on the

assumptions of a client-server solution built on the Alfresco framework, as well as on the above-

presented functional architecture (cf. section 6.1.2 and Figure 21) together with the distribution of

information resources and data objects within the system. Proposed information flow is schematically

depicted in the following figure.

The schema of information flow was constructed as a mapping of designed information resources into

the proposed structure of functional modules, with respect to the architecture of Alfresco framework.

The design of information flow follows the concept of three layers, distinguishing the data layer, inner

business logic, and user interface. The DR-IR data objects are managed on the data layer, while the

rest of information resources belong to the layer of business logic.

The information flow starts at the data layer, where the DR-IR data are stored in several repository

types. Alfresco already provides the MySQL database for structured relational data, the file system

storage for files, and the Lucene search index (http://lucene.apache.org). In addition, Alfresco contains

the Hibernate framework for accessing the data on an object level. These technologies will be

customised and implemented in the Version and Content managers, which then, via the data repository

API, provide the means for full data access and manipulation for other components on the business

logic layer.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 23 Information flow in the OCOPOMO system

The distribution of particular information resource types to the respective functional components, as

depicted in the information flow schema, is rather rough. The reason is that the data elements are

tightly correlated across information resource types, as it is presented Figure 22. Moreover, the

components usually need to manipulate with the data objects of more than a single resource type. So

the schema Figure 23 depicts typical relationships between components and information resources

only. The components in the Core subsystem work mostly with the CSM-IR and UMS-IR resources.

The User manager maintains the UMS-IR data, transforms and provides it to other components in a

suitable object representation. The Collaboration space manager typically uses both of these resources

and connects the workspace - social network environment data to the dedicated users. The data objects

of NS-IR, ePart-IR, and SM-IR are consumed, handled, transformed and provided by the components

of Scenario, Communication, and Simulation subsystems, respectively. The processed data are then

forwarded to the system API, which is implemented in Alfresco by the JBoss portal technology. The

resulting web content is presented to users in a web-based interface, which can be the system

administration console or a specific OCOPOMO client application. The information flow is, however,

bi-directional – users may do some actions and/or enter the data into the web-based interface; the data

are then propagated to the components of inner subsystems and consequently, after proper

transformations, are stored on the data layer.

6.2.2.2. Data ownership

The data ownership is a distribution of responsibilities and permissions between various types of

external users during their interactions with the OCOPOMO system. The main information resources

and data objects affected by particular types of actors / user roles are summarised in Table 51. The

mode of data transfer (i.e. C/U/D/R - Create / Update / Delete / Read) is indicated in the last column.

DATA

Design Operation

D
e
v
e
lo

p
m

e
n
t f

ra
m

e
w

o
rk

 (
J
a
v
a
 S

p
ri

n
g
)

W
e
b
 s

e
rv

e
r / A

p
p
lic

a
tio

n
 s

e
rv

e
r

(J
B

o
s
s
, A

p
a
c
h
e
 T

o
m

c
a
t)

WEB INTERFACE
Administration console Client application

INNER OCOPOMO SYSTEM
API / Implementation: JBoss portal, MyFaces portlet bridge

Database File system Indexes
System settings

Version
Manager

Content
ManagerRepository supporting services: transactions, clustering, security,...

Data repository API: content, search, versioning, transformation, workflow,...

Client application settings

Data connector

Physical
data storage:

SCENARIO SUBSYSTEM COMMUNICATION SUBSYSTEM SIMULATION SUBSYSTEM

CORE

DR-IR

User
Manager

Search
Manager

Collaboration
Space Manager

Notification
Manager

Process
Manager

Concept
Manager

Link
Manager

Annotation
Manager

Document
Manager

Simulation
Manager

Rule
Manager

SM-IR

UMS-IRCSM-IR

Discussion

Forums
Manager

Chat
Manager

Calendar
Manager

Polling

and Rating
Manager

NS-IR ePart-IR

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Actor Affected information resources Mode

Politician NS-IR: Narrative scenario, Scenario CCD U/R

CSM-IR: Workspace – social network environment U/R

ePart-IR: Document, Discussion, Chat,... C/U/D/R

SM-IR: Simulation model U/R

Civil servant NS-IR: Narrative scenario, Scenario CCD U/R

CSM-IR: Workspace – social network environment U/R

ePart-IR: Document, Discussion, Chat,... C/U/D/R

SM-IR: Simulation model U/R

Stakeholder NS-IR: Narrative scenario, Scenario CCD C/U/D/R

CSM-IR: Workspace – social network environment U/R

ePart-IR: Document, Discussion, Chat,... C/U/D/R

SM-IR: Simulation model U/R

Facilitator NS-IR: Narrative scenario, Scenario CCD U/R

CSM-IR: Workspace – social network environment C/U/D/R

ePart-IR: Document, Discussion, Chat,... C/U/D/R

SM-IR: Simulation model U/R

Analyst NS-IR: Narrative scenario, Scenario CCD C/U/D/R

CSM-IR: Workspace – social network environment U/R

ePart-IR: Document, Discussion, Chat,... C/U/D/R

SM-IR: Simulation model U/R

Modeller NS-IR: Narrative scenario, Scenario CCD R

CSM-IR: Workspace – social network environment C/U/D/R

ePart-IR: Document, Discussion, Chat,... U/D/R

SM-IR: Simulation model C/U/D/R

Administrator DR-IR: Data repository, System settings C/U/D/R

NS-IR: Narrative scenario, Scenario CCD U/D/R

CSM-IR: Workspace – social network environment C/U/D/R

ePart-IR: Document, Discussion, Chat,... C/U/D/R

SM-IR: Simulation model U/D/R

Table 51 Data ownership for external actors interacting with the system

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

6.3. INTERNATIONALISATION PERSPECTIVE

Internationalisation is the process of designing software in a way that can be adapted to different

languages and regions easily. Sometimes the term internationalisation is abbreviated as i18n
128

.

An internationalised program has the following characteristics:

 With the addition of localized texts, the same executable can run worldwide.

 Textual elements such as status messages and the GUI component labels are not hardcoded in

the program. Instead they are stored outside the source code and retrieved dynamically.

 Support for new languages does not require recompilation.

 Culturally-dependent data, such as dates and currencies, appear in formats that conform to the

end user's region and language.

 It can be localized quickly.

Localization is the process of adapting software for a specific region or language by adding locale-

specific components and translating text. Localization involves not only changing the language

interaction, but also other relevant changes such as display of numbers, dates, currency, and so on.

The aim of the OCOPOMO platform is to be used by different stakeholders in different countries (with

their own languages and country-specific settings). Therefore, the system should be independent from

the language and specific settings partners might use (system should be able to support them

automatically according to their basic internationalisation settings).

The main aspects that might influence the use of the OCOPOMO system by different partners are for

instance languages spoken, different measurement units such as length, capacity, money or time slots.

Internationalisation is not OCOPOMO's objective but we are aware that some issues might arise

concerning this perspective.

Of course, from all internationalisation issues, most important one is multilingual interface

(localization of interfaces). At least three languages in OCOPOMO have to be used for localization of

platform. Two of them are pilot specific, Italian and Slovak, and one is a generally used language -

English (in order to have at least one suitable interface for all other partners in the project, e.g.

modellers, scenario analysts, developers, dissemination partners, etc.). According to these needs the

OCOPOMO system will provide some mechanism for preparing all necessary resources. The main

benefit should be a simple localization also for other languages (e.g. other languages of OCOPOMO

partners like German and Polish). All localization stuff should be available using resource files, which

are outside the code.

After the implementation deployment of certain components might need to include some code in order

to deal with internationalisation. For instance, if Java applications are used for OCOPOMO,

internationalisation can be simply achieved by adapting them as suggested in I18N Java tutorial
129

.

6.3.1. Relevant user requirements

I-35 Multilingual interface

128

 There are 18 letters between the first "i" and the last "n".
129

 Trail: Internationalization (The Java Tutorial) - http://java.sun.com/docs/books/tutorial/i18n/index.html

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

I-NFT-8 Look and feel

6.3.2. Design considerations

Global vs. local perspective

Due to fact that different partners involved in the policy modelling process (at least in

OCOPOMO pilot cases, where we have modellers and scenario analysts) could be from

different countries, one of the issues that arise is the language problem. Even though the

OCOPOMO system languages will be English, Italian and Slovak we should consider in the

architecture whether different partners speak different languages. The OCOPOMO platform

should consider a mechanism in order to make all the important system messages and

notifications understandable and error prone for all the partners. This mechanism could allow

partners to select a language which they would like to communicate with the rest of partners.

Other issues that could arise are different time slots of partners involved in policy modelling

process. The platform should perform automatic conversion of day-time and help users know

working hours of corresponding partners. Also, the OCOPOMO platform should be able to

automatically convert between local units of measurement (if users are interested), e.g.

currency, length, capacity, etc.

6.3.3. Applications to relevant views

Functional view

Internationalisation could be considered when functionality features of OCOPOMO are dealt with.

Information View

This part of the system should be in charge of the date and time conversion and perhaps the language

problem. In second case main objective is to prepare and store resource files for every created user

interface according to i18n standard (using simple mechanism like in localization resources available

in Java platform technologies).

6.4. INTERACTION PERSPECTIVE

The interaction perspective describes user interface views and users‘ interactions possible with the

OCOPOMO platform. Therefore mock-ups have been created (see Appendix C). The design of the

mock-ups is based on the analysis of user requirements and use case diagrams and descriptions

presented in section 5.

Design considerations, which have been taken into account when creating the mock-ups, are presented

in the next subsection. Afterwards, the collaboration space of the OCOPOMO platform is introduced

in section 6.4.2. Section 6.4.3 describes users‘ interaction options to generate scenarios in a

collaborative way. Mock-ups demonstrating policy modelling features are not part of this deliverable,

as they are expected to be detailed in upcoming project deliverable D5.1 [Moss et al., 2010].

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

6.4.1. Design considerations

Web-based application

The OCOPOMO system should be designed as a web-based application (see, for example, the

requirement I-1 in [Bicking et al., 2010]). As described in section 3.5.2, Alfresco is used for

providing a web-based platform with content management facilities and collaborative means

(e.g. discussion forums). The mock-ups are created with the help of an Alfresco test system.

This helps to create mock-ups which show realistic views of the final platform. Therefore

screenshots are taken from the test-system and additional features and functionalities are

added into the screenshots.

Usability

Usability is an important factor for software to be accepted by provisional users. Regarding

the interaction perspective, a smooth and intuitive transfer from one screen into the next is

necessary – it is essential to simulate the final system and in this way mediate look and feel of

the prospective system to users at this early stage of development. In order to ensure this, the

mock-ups have been exported in the format of HTML files. Pushing the buttons guides users

to the subsequent mock-up screen.

6.4.2. Collaborative space

The collaborative workspace is a virtual space where users can come together and contribute to the

overall policy modelling process. The user starts at the main page of the project website (see Figure

63). The home page gives introductory information about the objectives of the website (on the home

page), the OCOPOMO project (click the link OCOPOMO) and policy modelling and simulation (on

―Model your future‖) and provides links to its other projects, if there are public projects available. The

home page is the first page seen by every visitor. A search functionality is available, too.

A log-in screen is available in the middle of the start page and on the right top corner of every page.

The registered user can log-in with user name or e-mail. He can ask for his password by clicking on

the ―Forgot password‖ (see Figure 65) link or register by clicking on ―Register‖ (see Figure 64).

6.4.2.1. Registration

If a user is invited into the collaboration space of a project, the user must first register. Notifying a

new user of the collaboration space is referred to as registration. The user has to type in some basic

information for registration. The registration is completed by pressing the ―Register‖ button. The user

is directed to the inner main webpage. From this inner main page, the user can follow all the links to

other webpages under the same domain. Once the user has been registered, the registered user can

access the content of the collaboration space according to the rights assigned to him/her.

It might happen that the user forgets his/her password. To obtain a new password, the user can click on

the link ―Forgot password‖ (see Figure 63) thereby the user is being forwarded to the password prompt

webpage (see Figure 65). At this page he/she is requested to enter his/her e-mail address. Then either

the new password is sent to the user or a link will be emailed to the user. After receiving the new

password, the user can type in his/her access data at the home page (see top right corner of Figure 63)

and access the collaborative space.

http://www.businessdictionary.com/definition/website.html
http://www.businessdictionary.com/definition/provide.html
http://www.businessdictionary.com/definition/link.html
http://www.businessdictionary.com/definition/part.html

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

6.4.2.2. Dashboard

The Dashboard (see Figure 68) is the first screen a users sees regularly after log-in. It is a webpage

which is custom-tailored to the individual user's preferences and shows the user the recent activities

after the last log-in. This is important for a facilitator in particular. He can see the newest changes

made by the other users.

The view is related to requirement I-F-16 which says that the system enables every registered user to

create a personalized homepage, which will not substitute the existing portal homepage. Rather it

serves as an aggregator of information, which is of the user‘s interest.

More specifically, each user can select one or more sections from the portal‘s available sections (i.e.

forums, news, processes etc), in order to have an overview of the latest developments in these areas

available in their own, personal homepage (The dashboard can be customized by clicking ―Customise

Dashboard‖). The order of appearance of these sections can also be customized. Furthermore, they can

select one or more of the available areas of debate and have content in their homepage that is related to

these areas, highlighted in the colours of their choice. But the dashboard does not need to be

customized as it has a usable structure from the beginning (given by its defaults).

The dashboard shows:

 ―My Calendar‖ with the recent events, published in the platform and visible for the user.

 ―Getting started‖ with a number of important information about the platform and its features.

Only functionalities, which are helpful for the user, are visible. For example, if the user does

not have the rights to add a project, the ―Create a Project‖ section is not displayed. Otherwise

it is available.

 ―My Profile‖ shows the information, which is available about the user. By clicking on ―View

full profile‖ users can see, edit and delete their profiles.

 ―My projects‖ shows all projects, which are visible to the user. This means that the box shows

the projects, which the user has created or has been invited to.

 OCOPOMO Feed represents the latest news about OCOPOMO or the projects. Can be

published by facilitators.

By clicking on the menu item ―Projects‖ the user comes to a website, which shows the projects, which

the user can access. The menu item ―People‖ shows a list with the user names of all registered users

(within the project) when clicked. The ―Repository‖ shows all project related documents, which the

user can access in the platform. Other functionalities are available under ―More...‖. A search

functionality is available, too. The latest four functionalities are ―standard‖ functionalities of Alfresco.

Therefore they are not further explained.

6.4.2.3. News entry

Publishing recent news about e.g. the policy area, decision making process should be an ongoing

process during the whole initiative. News in the portal should be rather short and up-to-date,

sometimes linked with the other contents in the portal and provide important background information

about the topics. Discussions can be started together with news published. The functionality to

comment news (similar to blog functionality) supports the interactivity of the news section. No extra

http://www.businessdictionary.com/definition/individual.html

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

blog functionality is needed because external as well as project internal news can be presented with

this kind of news functionality.

The requirements T-24, T-25 T-C2 [Bicking et al, 2010] are related to the news functionality. The

requirement T-24 is changed in the way that news can also be restricted to a certain project/user group.

Figure 81 shows the mock-up for a news entry with commenting and rating functionality.

6.4.2.4. Project

A project is a particular area of the collaboration space, which is used in order to collaborate with

other users to bring forward a policy issue. A project is created by a facilitator by clicking on the

―Create Project‖ link (see Figure 68). The policy description of a project includes text descriptions and

official background documents. The mock-up for creating a project is visualised in Figure 82. The user

can type in a name and a description. After creating a project, a project dashboard is displayed as

visualised in Figure 24. The ―Getting Started‖ box shows activities, which are possible for the user.

The authorized user can add documents and invite other people to join the project. The boxes

―Recently Modified Documents‖ and ―Project Activities‖ show the latest changes in the project. The

menu item ―Document Library‖ shows a list with all documents, which are linked with the project. A

―Calendar‖ gives the facilitator the possibility to add events interesting for the users who are

collaborating in the project. The granted users are able to add references to other interesting web sites

when clicking the menu item ―Links‖. A discussion forum is available when clicking the menu item

―Discussions‖. The menu item ―Members‖ shows the ―project colleagues‖, i.e. who can read and/or

edit the project. The project dashboard also shows the scenarios, which are related with the project.

After a project has been created, the initiator and the facilitators can invite users (including the

invitation of registered and unregistered users, i.e. users who are not yet involved but who were

identified as valuable contributors) to update the descriptions and to add new ones. Figure 83 shows a

mock-up for the invitation screen. The facilitator can search for people (i.e. registered users), add

external users (with first name, last name and e-mail) and assign them roles (―Set All Roles to‖).

The user can see an overview of all projects (cf. Figure 84) by clicking on the menu item ―Projects‖.

Facilitators have the possibility to delete projects. In addition, users have the possibility to leave

projects or to join projects. Joining a project is possible in the case the project is public or the user has

been invited to the project.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 24 Mock-up of the project dashboard

6.4.3. Collaborative scenario generation

The collaborative scenario generation starts with viewing the list of existing scenarios (see Figure 72).

At the beginning of the project only the initial scenario generated by the facilitators in conjunction

with the initiators of the project will be available in the list. The more active the stakeholders are in

generating scenarios, the more scenarios will be available in the list. Users of the system can view

existing scenarios either by selecting a scenario from the list with all scenarios included or by

searching for scenarios on the basis of tags (cf. Figure 72). The more tags are assigned to one scenario

by the author(s) (see Figure 73 and Figure 25), the better the quality of the search is.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

However, if a specific scenario is selected, the user receives the respective view on the scenario (see

Figure 74). Then the user can decide if he/she wants to contribute to the scenario and if yes, in which

of the variety of ways (see Figure 25).

Figure 25 Mock-up for editing scenarios

The user is able to edit the scenario by changing the description (i.e. adding new information,

changing and manipulating existing parts or deleting information).

6.4.3.1. Document sharing

Several features are provided to facilitate the communication and information exchange with the

intention of mutually learning and understanding. The system allows, therefore, for document

management. The user can view scenario-related documents by a double click on the respective

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

document (see right side menu in Figure 25, Figure 79). With it, the user will be directly forwarded to

the document. Furthermore, the user is also able to add new documents to the scenario by clicking on

the button ―Upload new document‖ (see right side menu in Figure 25). Then the user will be directly

forwarded to the site where he/she can upload and describe the document (see Figure 79). The user can

also view all documents by clicking on the menu item ―Document Library‖ (see main menu at the top

of the site). Document related features shall not only inform the user but also allow for collaborative

data gathering and information/knowledge sharing.

6.4.3.2. Discussion forum(s)

Communication features are provided to enable users of the project website to interact with each other

by exchanging tips and discussing hot topics related to a scenario theme. Therefore, users can join an

existing discussion forum or create a new forum (cf. Figure 77 and Figure 78). Forums save

information posted on a particular topic for other users to see it at any time. This creates a discussion

environment and allows the facilitators to gather further relevant information for policy modelling.

Everything that gets posted gets read again and again. The fact that the discussion is not real time

means that it rarely turns into heated arguments as users are given time to research and consider their

comments before replying. This makes for mostly high-quality discussion. Each forum has a

hierarchical tree-like structure, i.e. a forum consists of subforums, which again consist of topics (see

Figure 77). A single conversation on a topic is called thread where users are able to reply (see Figure

78). The user can view scenario-related discussions by double click on the respective discussion (see

right side menu in Figure 25). With it, the user will be directly forwarded to the discussion.

Furthermore, the user is also able to create a new discussion based on a theme from the scenario by

clicking on the button ―Create new forum‖ (see right side menu in Figure 25). Then the user will be

directly forwarded to the site where he/she can set up a new forum (see Figure 77). The user can also

view all discussion forums by clicking on the menu item ―Discussions‖ (see main menu at the top of

the site).

Experiences from e-participation projects monitoring and evaluation showed that in most forums

people who want to post have to register by giving their email address and names. This allows the

moderator to follow up and email them in the future with information about the project (such as new

services). These people seldom consider this contact as spam because they know the background.

6.4.3.3. Public opinion polling

The system offers public opinion polling as one way to obtain an unbiased view of the public opinion

on a range of issues related to the policy theme. Polls can show trends in the concerns, fears and hopes

of stakeholder groups, which are important for policy modelling exercise. The user can view all polls

related to one scenario by double click on the respective discussion (see right side menu in Figure 25).

With it, the user will be directly forwarded to the poll (whereby polls can be questionnaires, ratings,

and voting depending on the purpose of the poll). Furthermore, the user is also able to create a new

poll based on a theme from the scenario by clicking on the button ―Create new poll‖ (see right side

menu in Figure 25). Then the user will be directly forwarded to the site where he/she can set up a new

poll. The user can also view all existing polls by clicking on the menu item ―Polls‖ (see main menu at

the top of the site).

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

6.4.3.4. Showing site colleagues and contacting author(s)

For collaborative scenario generation it might be helpful to build relationships with users and help

them to build relationships with each other. Regular posts and active discussions among forum

members can support this as they get to know each other. So, it is a nice feature of the system to show

its users who are their site colleagues. Besides, some users may want to more personal exchange

information on specific issues. Therefore, the system offers users the opportunity to contact the

author(s) of the scenario (see Figure 75 and Figure 25).

6.4.4. Application to relevant views

Functional view

All aspects within the interaction view are already incorporated in current functional view (through

use cases and user requirements) or they will be used (mock-ups) during the implementation of

particular components and their user interfaces. Therefore we do not need to update functional view, if

all recommendations from interaction perspective will be respected in the subsequent implementation

phase.

Information view

No update is needed for the information model. All data-related aspects (relevant to interaction view)

were added into the model during user requirements identification phase and use case modelling.

Mock-ups are only implementation-related and are connected to use cases.

6.5. USABILITY PERSPECTIVE

Usability has multiple components, it is not a one-dimensional property of a user interface.

Traditionally, it is associated with the following five usability attributes of the system: easy to learn,

efficient to use, easy to remember, low error rate, and pleasant to use [Nielsen, 1993].

E-participation and collaboration services via electronic channels, as provided in OCOPOMO, need to

be simple, effective, easy-to-use and functional. Besides this, the look and feel as well as the fun-

factor should not be underestimated [Scherer et al., 2009]. Especially in contexts, where

heterogeneous user groups should actively participate in policy discussions and participatory decision-

making by electronic means, usability is crucial.

6.5.1. Usability engineering

To fulfil usability requirements, the design and implementation of the OCOPOMO platform should

follow well designed processes. Systematic usability engineering is necessary at least to ferret out

minor design details that influence usability [Nielsen, 1993]. Bad usability on local government web

sites may destroy the strategy of the whole website [Esteves, 2007]. Therefore all decisions about the

OCOPOMO user interface need to be the result of a systematic process and should be documented.

Usability engineering is not one single step in the product development cycle. It is a set of activities

that should take place throughout the lifecycle of the product. Nielsen proposes a number of steps for

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

the user engineering lifecycle [Nielsen, 1993, p. 72f]: (1) Know the user; (2) Competitive analysis; (3)

Goal setting; (4) Parallel design; (5) Participatory design; (6) Coordinated design of the total interface;

(7) Guidelines and heuristic evaluation; (8) Prototyping; (9) Empirical testing; (10) Iterative design;

(11) Feedback from field use.

It is not always possible to perform all these steps in one product lifecycle [Nielsen, 1993]. There are a

number of other lifecycles specialised and adapted for different project types [Mayhew, 1999].

In order to ensure the usability of the OCOPMO platform, it is recommended to have an iterative

design and development process and a pilot evaluation phase performed before the official launch of

the platform. The iterative design process means that the proposed solution will be tested at several

levels against the requirements and usability goals considered in the requirements analysis phase using

methods as heuristic evaluation and empirical testing. If the proposed solution does not meet the

usability goals, the design will be improved. The iterative design and development process starts with

the design of the architectural views, then goes beyond the pilot implementation, and ends with the

launch of the platform.

One problem with iterative design is that changes in the user interface to solve one usability problem

can bring new usability problems. Therefore iterative design and evaluation should be combined

[Nielsen, 1993].

6.5.2. Relevant user requirements

I-NF-1 Usability

I-NF-2 Accessibility

I-NTF-8 Look and Feel

I-NF-11 User guide is needed to assist users in system navigation and task accomplishment.

6.5.3. Design considerations

Novice vs. expert users

The users of the OCOPOMO platform will rather be novice than expert computer users.

Bandwidth

The web access for participation tools should have a simple interface that is even responsive if

the bandwidth is low (e.g. no big images on the web site). Otherwise the usage of the platform

could be unattractive for certain user groups.

Mobile phones

The client user interfaces to access participation tools needs not to be accessible with mobile

phones.

6.5.4. Usability in OCOPOMO

Subsequently, important aspects to ensure a good usability of the OCOPOMO platform are mentioned:

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Look and Feel

The OCOPOMO platform will consist of different components. In order to ensure the usability of the

platform, it is necessary that the components have a consistent look and feel.

Security

The analysis of the processes and the target groups results in security requirements. Only if the users

trust the system, they will be willing to use it. Hence general security requirements can be seen as user

requirements. General objectives and corresponding kinds of security requirements, as e.g.

identification requirements, authentication requirements etc., can e.g. be found [Firesmith, 2002]. In

particular a platform like the OCOPOMO platform should be secured against sabotages to ensure the

confidence of the users in the system.

Spelling

In order to make the usage easy, the spelling should be consistent in the overall platform. This

includes that the same features have the same name no matter where they are on the platform (e.g. the

forum should not be named forum on one site and discussions on another one). In addition, the

spelling needs to be simple and self-explanatory.

Scenario

Probably, a number of end-users may exist who are not able to write a scenario on-line from scratch.

 Therefore there will be the need to have some core scenarios generated with facilitators -- either at

real meetings or possibly virtual meetings. So, it could be an idea to offer one core scenario and the

possibility for end-users easily to create branches by changing some of the assumptions (including

rules)
130

. Even then, the most effective way of achieving this could be for end-users to complain about

specific elements of an existing scenario or about the lack of some element and then for a

moderator/facilitator to start writing and posting the alternative scenario - possibly as a result of a

forum discussion. But the users need to have the opportunity to generate complete new scenarios on-

line instead of letting them just participate in off-line meetings.

The dashboard

It needs to be tested in empirical testing if users can use Alfresco functionalities as e.g. customising

their dashboard. The dashboard looks to be well designed for people who are seriously committed to

engaging in the process. The question is if deeply involved stakeholders (our target end-users) are

likely to be so committed. But as the dashboard is a standard Alfresco feature, it is included but should

be tested with OCOPOMO target group. Features, which confuse the users without bringing an added

value, should be removed after empirical tests.

Role specific interfaces

Often used functionalities should be provided to the users with direct links on the first webpage/start

page. Different users (e.g. administrators, policy modellers, stakeholder in some simpler user role,

etc.) can have a specific user interface according to their knowledge, objectives and responsibilities.

This can be done with customising the dashboard for different user roles.

How-tos

Functionalities which are to be used by politicians, NGOs etc. as discussion forums and content

management functionalities, need to be self-explanatory and usable without any further assistance.

Simple how-tos can support this. Functionalities, which are used by policy modellers, should be

described in short videos and with a manual.

130

 A branch scenario should start with a specification of the differences from the trunk scenario – see the

versioning requirements.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

6.5.5. Application to relevant views

Functional view

Particular usability issues are served in different way:

 Due to fact that mobile devices are not expected to be specifically used within the scope of the

project (in their own specific form for views/layouts), only standard layout of the application

will be available (there is no need to add user interface module for such specific views).

 How-tos (help and assistance) will be incorporated within every functionality (where

applicable and per user interface of particular managers) and specific manuals/tutorial

materials (expected to be available after integration workpackage).

 Security on access rights and data provision level is controlled by User manager (with all

authorization aspects based on roles) combined with Process manager (for context-based

views), authentication is reused within web/application server (e.g. Alfresco).

 Look and feel should be realised according to particular managers with their user interfaces

and according to users‘ expectations described by mock-ups within the implementation of

particular components (available as a part of interaction view).

 Role-specific interfaces and customised dashboard are achieved by user profiles (available

using User manager) and customisation of shared space (Collaboration space manager)

according to context (from Process manager), access rights and role. Additionally, dashboard

customisation is available in Alfresco Share tool, therefore it is easy to reuse this feature

directly in user interface of shared space.

 Scenario and spelling issues have to be in mind during the implementation of the components

(especially user interfaces), but it is not needed to change current architecture.

According to previous information, there is no need for additional component(s) in the architecture to

support usability issues in some specific way (all of them are served using current architecture or

development process within the project).

Information View

In order to realise the requirements of the usability perspective, the existing information model has to

support user profiles and access rights. The current model already has such elements. Manuals and

how-tos are not specific for policy modelling information model of OCOPOMO, they will be only

used as help/tutorial materials (or implemented together with particular functionalities as help inside

the system). Therefore we do not need to update the information model.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7. COMPONENT FUNCTIONAL DESCRIPTION

7.1. ANNOTATION MANAGER

7.1.1. Relevant user requirements

T-39 Computer-assisted Qualitative Data Analysis Software Tool – Coding of text passages

and clustering of codes

T-40 Computer-assisted Qualitative Data Analysis Software Tool – flexible querying of

codes and issues

T-41 Computer-assisted Qualitative Data Analysis Software Tool – statistics

T-C1 Hints for interesting topics

NFR02_PM PM (Transformation process) - Language transition

I-2 Transformation table – connection of context-specific information within the Scenario

Generation and Policy Modelling process in ICT toolbox

I-19 Log of activities within scenario generation

New requirements:

SOTA-6 Information structuring

SOTA-7 Memos

UC-6 Generation of relations

UC-7 Expertise-based relations

UC-8 Quantitative data analysis

7.1.2. Context of the component

A context of the Annotation Manager is depicted in Figure 26. The manager is expected to

communicate with the following managers:

 Concept manager – to store and retrieve identified annotation elements (phrases, clusters,

metadata)

 Content manager – to store and retrieve manager related data, providing storage functionality

 Document manager – to retrieve relevant documents (scenarios as well as other scenario-

related document types)

 Link manager – to store information on relations between objects (documents and phrases,

phrases and relations, relations and relations)

 Process manager – to retrieve process specific information playing the role of a context

 Search manager – to search within annotated text chunks (phrases), associated metadata and

identified relations

 User manager – to obtain information on access rights and roles played by users

In addition to this, it is possible to utilise also other managers: Polling and Rating manager as well as

Discussion forums manager and Chat manager for creating a communication channel linked to

identified objects.

http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-language-transition

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 26 Context of Annotation Manager

7.1.3. Supported use cases

The component mainly provides services to users, it represents a part of the system's front-end user

communicates with. Its aim is not to support other components. In the presented use case diagram,

User actor represents any user-related actor that uses functionality of Annotation manager.

The manager provides users with functionality enabling to transform unstructured textual information

as well as implicit expert knowledge into explicit knowledge structures. It enables to identify and

select text phrases, organise them into different binary or n-ary relations, as well as to create higher

order relations structuring and organising other relations. The created objects can be associated with

metadata information. In addition to creation, the existing objects can be modified as well as removed

from users' consideration.

All defined objects can be analysed to support users in their management. It is possible to perform

qualitative analysis enabling to cluster objects/relations in order to express discovered relations among

objects. To complement this, quantitative statistical analysis can be performed on identified objects as

well. The objects can be compared to find differences and similarities.

Visualisation represents a window into complicated relationships among phrases and/or relations. In

addition to visualising objects separately, it is possible to visualise differences between objects as well.

Two types of visualisation are considered: network-based (utilising links between objects) and table-

based (focusing on objects and their properties).

Annotation

Manager

Search

Manager

Calendar

Manager

Polling and

Rating

Manager

Content

Manager

Link

Manager

Concept

Manager

Collaboration

Space

Manager

User

Manager

Process

Manager

Chat

Manager

Discussion

Forums

Manager

Notification

Manager

Simulation

Manager

Rule

Manager

Version

Manager

Document

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 27 Use cases supported by Annotation Manager

7.1.4. Functionality description

Basically, the manager serves as a document analyser. Its aim is to put a structure upon unstructured

representations and therefore transform knowledge hidden in documents into explicitly represented

conceptual knowledge structures. Documents to be analysed can have two forms:

 textual documents represented explicitly as computer files utilising one of accepted document

formats,

 mental documents representing expert knowledge (i.e. implicitly represented documents

located in experts' minds).

In order to identify relevant information in textual documents, users have the possibility to read

documents and select phrases (text passages) manually. The identified phrases are coded and stored.

To manage defined phrases, users can revise the selection - they can modify phrases (extend, shrink or

move them across text) as well as remove them completely. To support orientation, phrases are

visualised as highlighted fragments over text representation using different colours reflecting

characteristics of the phrases.

Identified phrases can be processed in two ways, creating binary or n-ary relational knowledge

structures:

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 relations between phrases can be defined by selecting two phrases and an appropriate

dependency type (it is possible to relate phrases within one textual document as well as

phrases form different textual documents)

 phrases can be clustered by selecting phrases (from one or more textual documents) and

naming the cluster appropriately

Management of the created relational structures is available - the structures can be modified and/or

deleted. Moreover, phrase clusters can be split into more clusters or several clusters can be merged

into one cluster.

To deal with experts' mental documents, experts can define phrases as well (since their mental

documents are not explicitly represented, phrases cannot be selected but must be typed). It is possible

to process these phrases in the same way as the phrases identified in textual documents (both phrase

types can be mixed). In addition, experts can define phrase clusters without the necessity to define and

code phrases (so called expertise-based clusters).

To support identification of different relationships, the manager enables to define and manage

relations over already existing binary as well as n-ary relations, for example it is possible to cluster

relations between phrase pairs or relate different phrase clusters. To support creation of these higher

level relations, the manager provides functionality to analyse existent relations (e.g. if two phrases,

belonging to different clusters, are related, then the given clusters may be related as well), comparing

them (e.g. if two clusters share one or more phrases then they may be related) and visualising the

relations (either as network of relations or using a table-based format).

All defined elements (text phrases and relations) can have assigned metadata. Some metadata are

expected to be filled in an automatic way (e.g. author or context), the others are user defined. Full-

fledged management facilities for metadata are provided to users. In order to support different views

and/or different evolution stages, all elements can be versioned (different versions of an object can

exist) and versions of the same object can be compared to indicate differences.

All elements, the component manipulates with (phrases, relations and metarelations), are expected to

be interlinked in order to preserve the 'cause-result' relationship. These links enable visualisation of the

dependence among different objects, enabling going back and forth in this network (e.g. going from a

document to a phrase, from a phrase to a cluster, from a cluster to a higher order relation, etc.).

In order to enable quantitative analysis as well, the manager provides statistical support on different

levels (from words through phrase clusters to higher order relations).

Communication with Search manager is actually proposed in the way of a direct search within content

repository elements related to Annotation manager. When needed, API can be added in the revision of

the component.

7.1.5. Component API

none
131

 (the manager does not provide functionality for other managers)

131

 Only functionality offered to other managers/modules is presented. Functionality consumed by users directly

is not present in the API sections of particular managers.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.2. CALENDAR MANAGER

7.2.1. Relevant user requirements

T-28 Shared calendar with events related to the current processes

T-42 Tags

7.2.2. Context of the component

Figure 28 Context of Calendar Manager

A context of the Calendar Manager is depicted in Figure 28. This manager is expected to communicate

with the following managers:

 Collaboration space manager – to provide shared calendar as a part of the collaboration space

within the current project (process)

 Content manager – to store and retrieve calendar-related data to/from the content repository

(especially metadata about events)

 Notification manager – to send calendar reminders through notification channel (email)

 Search manager – to provide search in calendar events

 User manager – to obtain information on access rights and roles played by users

Calendar

Manager

Annotation

Manager

Simulation

Manager

Rule

Manager

Version

Manager

Process

Manager

Polling and

Rating

Manager

Link

Manager

Discussion

Forums

Manager

Document

Manager

Concept

Manager

Chat

Manager

Collaboration

Space

Manager

Notification

Manager

Content

Manager

Search

Manager

User

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.2.3. Supported use cases

The component mainly provides services to users, it represents a part of the system's front-end user

communicates with. Its aim is not to support other components, only use some of their APIs. In the

presented use case diagram, User actor represents any user-related actor that uses functionality of

Calendar manager.

Figure 29 Use cases supported by Calendar Manager

The component represents user interface for management and visualisation of shared calendar events

(and agenda). User is able to open shared calendar within the collaboration space and view existing

calendar events and agenda. He/she is also able to create new calendar events (with setup of reminder

function according to this event) as well as modify (edit) or remove them. As it is shared calendar, it is

possible also to setup subset of user for whom the current event is important (and they will see them)

or modify target users of already added calendar events.

7.2.4. Functionality description

The component serves as a user interface for calendar functionality within collaboration space of a

current project (process), which includes:

 creation of new shared calendar event - it is necessary to insert date/time settings, target group

of users for sharing, reminder settings, metadata information

 edit calendar event - user is able to open a calendar event and change different parts of the

calendar event settings like date/time, sharing details (target users), reminder settings,

metadata information

 remove calendar event

 view (open) an agenda list (a compiled list of active events)

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

All actions are also controlled by the access rights from the user management component. When

reminder functionality is setup, system will automatically (using notification component) notify

targeted users (in case of calendar events usually by email). For storage and retrieving calendar events

system reuses calendar tool functionality and/or content manager for (automatic) storage of calendar

event and its details/metadata. Search is done on the side of Search manager, which can directly search

in data related to calendar within content repository. Context is (intentionally) shared using

collaboration space and its personalisation/customisation to current process.

7.2.5. Component API

none (the manager does not provide functionality for other managers)

7.3. CHAT MANAGER

7.3.1. Relevant user requirements

T-4 Chat

7.3.2. Context of the component

Figure 30 Context of Chat Manager

A context of the Chat Manager is depicted in Figure 30. This manager is expected to communicate

with the following managers:

Chat

Manager

Annotation

Manager

Notification

Manager

Simulation

Manager

Calendar

Manager

Content

Manager

Rule

Manager

Version

Manager

Process

Manager

Polling and

Rating

Manager

Link

Manager

Concept

Manager

Collaboration

Space

Manager

Discussion

Forums

Manager

Document

Manager

Search

Manager

User

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Collaboration space manager – to provide chat as a part of the collaboration space within the

current project (process)

 Discussion forums manager – to reuse discussion forums functionality in order to create new

forum after finished chat session (if needed)

 Document manager – to store finished chat in document library as document (with metadata)

 Search manager – to provide search for text in current or finished chat(s)

 User manager – to obtain information on access rights and roles played by users

7.3.3. Supported use cases

The component mainly provides services to users, it represents a part of the system's front-end user

communicates with. Its aim is not to support other components, only use some of their APIs. In the

presented use case diagram, User actor represents any user-related actor that uses functionality of Chat

manager.

Figure 31 Use cases supported by Chat Manager

The component represents user interface for creation of simple chat room(s). Users are able to add

messages to chat and communicate using simple text inputs. Users are also able to edit their messages

in active chats (in order to avoid/repair typos).

Another supported action is possibility to create discussion forums after the finishing chat session. It is

also possible to reuse document management functionality and create a document version of finished

chat (with metadata).

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.3.4. Functionality description

The component serves as a user interface for simple chat functionality within collaboration space of a

current project (process), which includes:

 creation of new chat that should have some title (topic)

 adding new messages into chat - it should be possible to react on some previous message

 storage of finished chat in one document within content management system - chat history can

be saved into one document (with necessary metadata) using Document manager API in order

to have data in system (if users see that it is potentially relevant for storage as a source of

interesting information)

 creation of discussion forums directly related to a finished chat (if users want to follow in

communication using asynchronous way)

All actions are also controlled by the access rights from the user management component. Search is

done on the side of Search manager, which directly searches in data related to a chat within content

repository. Context is (intentionally) shared using collaboration space and its

personalisation/customisation to current process.

7.3.5. Component API

none (the manager does not provide functionality for other managers)

7.4. COLLABORATION SPACE MANAGER

7.4.1. Relevant user requirements

I-1 ICT toolbox functionality provided through one portal-based interface

I-2 Transformation table – connection of context-specific information within the Scenario

Generation and Policy Modelling process in ICT toolbox

I-4 Creation of stakeholder groups for the scenario generation process

I-5 Integration of components within the e-participation tools for scenario generation –

data exchange / annotation

I-7 Integration of components within the e-participation tools for scenario generation –

workspace

I-23 Creation of stakeholders groups for policy modelling process

I-32 Workflow support

I-F-I5 User profile

I-F-I6 Personalise overview

New requirements:

UC-1 Rights management

UC-4 Initiate project

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

UC-5 Update description of the project

7.4.2. Context of the component

Figure 32 Context of Collaboration Space Manager

A context of the Collaboration Space Manager is depicted in Figure 32. This manager is expected to

communicate with the following managers:

 Calendar manager – to manage/reuse shared calendar functionality available within

collaboration space of current project (subpart: sharing of communication utilities)

 Content manager – to store and retrieve information related to collaboration space

management (current project information, members, etc.)

 Chat manager – to manage/reuse chat functionality available within collaboration space of

current project (subpart: sharing of communication utilities)

 Document manager – to store, retrieve and provide documents and necessary functionality

from the content management part of the system

 Discussion forums manager – to manage/reuse discussion forums functionality available

within collaboration space of current project (subpart: sharing of communication utilities)

 Notification manager – to publish/notify users about new artefacts and elements in space

through different channels (email, news, newsletter, RSS, hints, etc.)

 Polling and Rating manager – to manage/reuse polling functionality and rating (feedback-

based and tagging) of elements within collaboration space of current project (subpart: sharing

of communication utilities)

 Process manager – to retrieve process specific information playing the role of a context

 Search manager – to provide search for objects in collaboration space in federated view

(combination of different resources available in space)

Collaboration Space

Manager

Notification

Manager

Calendar

Manager

Content

Manager

Search

Manager

Process

Manager

Polling and

Rating

Manager

Discussion

Forums

Manager

Document

Manager

Chat

Manager

User

Manager

Concept

Manager

Annotation

Manager

Simulation

Manager

Rule

Manager

Version

Manager

Link

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 User manager – to obtain information on access rights and roles played by users, and also to

provide profile preferences

7.4.3. Supported use cases

The component provides some services to users, but mainly serves as shared space for different tools

(discussion forums, chat, calendar, document library, etc.) and some specific services for customised

and personalised overview of current process. In the presented use case diagram, User actor represents

any user-related (and authorised for this action) actor that uses functionality of Collaboration space

manager. Application actor represents generally any tool shared within the space.

Figure 33 Use cases supported by Collaboration Space Manager

The component basically represents a collaboration space for users and applications to provide shared

space together with some management and personalisation features. The presented use cases indicate

processing and manipulations with collaboration space elements, which can be seen as a ‗container‘.

Collaboration space manager also supports creation of such shared spaces to specific process(es).

It is possible to create, use (visualise), update and destroy application specific objects (e.g. discussion

forums elements, chat, calendar events, document library elements, hints, RSS readers, news,

newsletters, etc.) by reusing their particular APIs. Therefore, collaboration space provides general

place for sharing its ‗space‘.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Other functionality focuses on the federated (combined) search through different data/information

types (application elements), management (administration of current collaboration space, members

management, etc. – all included within ‗Manage membership‘ use case) and customisation or

personalisation of collaboration space (setup of personal start page for group and for particular user,

users‘ ability to personalise their customised pages).

7.4.4. Functionality description

The component serves as a ‗container‘ for sharing different data and applications (tools) in one shared

space with personalisation features. Its aim is:

 to create shared space in order to support initiation of project (process)

 to provide ‗space‘ (in general) in collaboration space for sharing applications (tools) and its

data (if sharing is needed for accomplishing particular tasks)

 to manage collaboration space settings (administration of shared space, members

management, etc.)

 to personalise start page and its ‗attention management‘ features

 to provide results related to federated search in different applications information and data

types (data models)

Creation of collaboration space is provided directly by this component and should be used by other

components. In our architecture it is Process manager that helps in initiation of the projects (process of

policy modelling). It includes specification of project details and basic management of created space

(basic access rights setting, invitation of users – starting group, creation of and access to basic

documents). Management of collaboration space is then (after creation) also available to authorized

users directly within the shared space interface.

In general, it is expected that collaboration space provides (as simple as possible) support for

involvement of any tool suitable for incorporation into shared space (within specific dashlet/portlet or

some specific tab). This can be achieved mostly by implementing some specific class or user interface

characteristic for technological framework under the OCOPOMO platform.

Personalisation and customisation of the shared space and user‘s personal overview pages is done

within collaboration space and its manager supports it as a functionality for users. While shared space

can only be customised by administrators of such space, personal overview pages and specific

(profiled) settings on tools are managed by all involved users individually according to their user

profiles.

Shared space combines many different types of data and applications. Therefore user is able to reuse

search component for providing combined/federated searches through different parts of the

OCOPOMO data model. Search specific to collaboration space members is done on the side of Search

manager, which directly searches in data related to shared space memberships within content

repository.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.4.5. Component API

Function Description

Create collaboration

space

To initiate process-specific shared space.

Input: process – an identification of a process instance (context)

details – basic information regarding start of the process, e.g. textual

details, basic settings, administrator, basic set of involved users

Output: space – new collaboration space with process-specific context

Support tool in

collaboration space

To provide functionality/interface within the collaboration space for

particular tool (register application).

Input: tool – an identification of a tool (application) for incorporating to

collaboration space

space – an identification of targeted collaboration space

Output: result type – to identify whether registration was successful or

failed

Table 52 Collaboration Space Manager API

7.5. CONCEPT MANAGER

7.5.1. Relevant user requirements

T-23 PM (Analysis) - Qualitative representation of the simulation results

T-39 Computer-assisted Qualitative Data Analysis Software Tool – Coding of text passages

and clustering of codes

T-40 Computer-assisted Qualitative Data Analysis Software Tool – flexible querying of

codes and issues

T-41 Computer-assisted Qualitative Data Analysis Software Tool – statistics

FR01_PM PM (Transformation process) - Define initial policy modelling aspects

FR02_PM PM (Transformation process) - Stakeholder extraction

FR03_PM PM (Transformation process) - Environment generation

FR04_PM PM (Transformation process) - Goal definition

FR05_PM PM (Transformation process) - Rule generation

FR06_PM PM (Transformation process) - Assumption definition

FR07_PM PM (Modelling process) - Agent type creation

FR08_PM PM (Modelling process) - Agents at different aggregation levels

FR09_PM PM (Modelling process) - Exogenous factors

FR10_PM PM (Modelling process) - Environment definition - general

TP-1 PM (Analysis) – Within-timestep dependency graph visualisation

TP-2 PM (Analysis) – Experiment and rule development browser

TP-3 PM (Analysis) - Narrative output

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

NFR01 PM (Transformation process) - Data representation

I-2 Transformation table – connection of context-specific information within the Scenario

Generation and Policy Modelling process in ICT toolbox

I-5 Integration of components within the e-participation tools for scenario generation –

data exchange / annotation

I-12 Support for direct export/import of information between scenario generation process

and policy modelling

I-14 Maintaining of scenarios and rules within the ICT toolbox

I-25 Integration of policy modelling tool and simulation / analysis tools – data exchange /

annotation

I-40 Transition table browser

7.5.2. Context of the component

Figure 34 Context of Concept Manager

A context of the Concept Manager is depicted in Figure 34. This manager is expected to communicate

with the following managers:

 Annotation manager – to provide functionality for creation of conceptual description elements

 Content manager – to store and retrieve concept to/from the content repository

 Link manager – to use link functionality for knowledge modelling and connecting concepts

with other data/knowledge sources and elements

 Process manager – to retrieve process specific information playing the role of a context

 Rule manager – to provide concepts from conceptual description in definition and evaluation

of rules and agents

Concept

Manager

Annotation

Manager

Simulation

Manager

Content

Manager

Search

Manager

Rule

Manager

Version

Manager

Process

Manager

Link

Manager

User

Manager

Collaboration

Space

Manager

Notification

Manager

Calendar

Manager

Polling and

Rating

Manager

Discussion

Forums

Manager

Document

Manager

Chat

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Simulation manager – to provide concepts from conceptual description in definition and

evaluation of simulation models and simulations

 Search manager – to provide search in concept objects and its metadata

 User manager – to obtain information on access rights and roles played by users

 Version manager – to support versioning in storage and retrieving of conceptual descriptions

(CCD)

7.5.3. Supported use cases

The component provides service for creation and management of conceptual description objects to

particular managers in order to support them in knowledge-based policy modelling process and

evidence-based description of problem.

Figure 35 Use cases supported by Concept Manager

The component is able to work with concepts from conceptual descriptions – create, modify and

remove them from the structured model of CCD. The presented use cases show processing and

manipulations with such objects. In general, component provides services for other managers

(Annotation, Rule, etc.) to create, modify, remove and access concepts on the one side (with its

specific metadata), and to use content repository in order to store and retrieve concepts on the second

side (low ‗data‘ level of concepts definitions).

Visualisation of concepts is expected to be provided by other components (Rule manager, Annotation

manager, etc.). Links between CCD elements (concepts) and other parts of data model are modelled

using different manager (Link manager). Concepts can be versioned using versioning support of other

manager (Version manager) during the process of storing the concept.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.5.4. Functionality description

The component serves as a ‗middleware‘ between managers for direct (user-based) support of scenario

analysis and policy modelling process and low-level repository storage, where conceptual descriptions

are created and managed. For example, Rule manager is using already created concepts (from

Annotation manager) and adds links to them, but also is able to create another concepts and new links

in order to create sufficient knowledge base for creation of a simulation model. So the main objectives

are:

 to provide methods for creation of concepts (conceptual description elements) of different

types (structured information with part of rules, agents, actors, networks of them, etc.) with

metadata definition according to identified data model

 to provide concepts (on demand) for other components

 to support persistence of conceptual descriptions within content repository – storage and

retrieval of concepts and their metadata

 to support versioning of concepts within repository (using Version manager)

More details regarding conceptual definition of objects is written within specialised components for

scenario analysis and policy modelling (Annotation manager, Rule manager, Simulation manager). In

general, concepts are a part of the linked and structured information from evidence-based data to

simulation models with agents and rules. Search is done on the side of Search manager, which directly

searches in data related to concepts within content repository.

7.5.5. Component API

Function Description

Create concept To create conceptual description element of defined type.

Input: type of concept – a definition of type concept element

data object – an object with all data necessary to create defined type of

concept and its metadata

Output: concept – an identification of created conceptual description

element

Modify concept To modify concept definition and data.

Input: concept – an identification of a concept

data object – an object with necessary data and definitions to modify

specified concept and/or its metadata

Output: result type – to identify whether update of concept was

successful or failed

Get concept To obtain concept from conceptual description.

Input: concept – an identification of a concept

Output: concept object – retrieved object of specified conceptual

description element

Table 53 Concept Manager API

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.6. CONTENT MANAGER

7.6.1. Relevant user requirements

T-5 Content Management System (CMS) functionality

I-25 Integration of policy modelling tool and simulation / analysis tools – data exchange /

annotation

7.6.2. Context of the component

Figure 36 Context of Content Manager

A context of the Content Manager is depicted in Figure 36. This manager is expected to communicate

with the following managers:

 Annotation manager – to store/retrieve manager-specific data (annotations and its

combinations, evidence-based data, etc.)

 Calendar manager – to store/retrieve manager-specific data (calendar events and its metadata)

 Collaboration space manager – to store/retrieve manager-specific data (shared space settings,

memberships of users, etc.)

 Concept manager – to store/retrieve manager-specific data (concept objects)

 Discussion forums manager – to store/retrieve manager-specific data (discussion forums and

their elements with metadata)

Content

Manager

Notification

Manager

Chat

Manager

User

Manager

Annotation

Manager

Collaboration

Space

Manager

Calendar

Manager

Version

Manager

Concept

Manager

Simulation

Manager

Search

Manager

Rule

Manager

Process

Manager

Polling and

Rating

Manager

Link

Manager

Discussion

Forums

Manager

Document

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Document manager – to store/retrieve manager-specific data (documents and types of

documents, all with metadata)

 Link manager – to store/retrieve manager-specific data (link objects)

 Polling and Rating manager – to store/retrieve manager-specific data (polls and relevance

feedback data)

 Process manager – to store/retrieve manager-specific data (context)

 Rule manager – to store/retrieve manager-specific data (rules, agents, etc.)

 Search manager – to support search in different content repository objects and store/retrieve

manager-specific data

 Simulation manager – to store/retrieve manager-specific data (simulation models, results, etc.)

 Version manager – to support versioning of content repository objects

7.6.3. Supported use cases

The component provides services to other components for storage and retrieval of objects to/from

content repository. In provided use case diagram Manager actor represents any manager that uses

services of Content manager to store/retrieve content repository object. Additionally, search for

specific content repository objects (and their metadata) is provided to Search manager.

Figure 37 Use cases supported by Content Manager

The component represents a service for content repository management. Instead of Document

manager, where user interface to document management is important, here we have more low-level

vision of different types of objects and functionality for their persistence and accessing by other

components (provided by them to users).

Main use cases are store (also used as modifying) and retrieve objects to/from content repository.

Combination of them is used also for modifying, but this is done on the side of particular components

(they retrieve object, modify it and then store back in repository, with versioning support, if needed).

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Search manager has (additionally to standard store/retrieve functions) search in content repository

objects and retrieve them as query results.

7.6.4. Functionality description

The component serves only as a service for other components in order to store/retrieve functionality

for them in content repository. So the main objectives are:

 to store object – component specifies type of an object and inserts data into object, which is

then stored

 to retrieve object – object is retrieved according to its identification

 to search in objects – Search manager specifies a query and types of objects for search,

relevant objects are then returned as a result set (hits)

 to support versioning of objects in content repository (using versioning component)

Context-specific information (if it is needed) is obtained using service of Process manager.

7.6.5. Component API

Function Description

Store object To store object of defined type in content repository.

Input: type – data-model definition of type of object for storage

data – object of such type with specific data (if object is going to be

modified, data have existing ID, otherwise it is generated)

Output: object – an identification of currently stored object in repository

Retrieve object To retrieve object from content repository.

Input: identification – unique identificator of object to be retrieved from

the repository

Output: object – retrieved object from the repository

Search for objects To provide search in content repository for defined type of objects and

according to specified query.

Input: type – defined type of objects to be searched

query – specified query to repository

Output: hits – set of objects returned as results to specified query

Table 54 Content Manager API

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.7. DISCUSSION FORUMS MANAGER

7.7.1. Relevant user requirements

T-1 Discussion forums

T-1-1 Discussion forums - multiple instances of a forum

T-1-2 Discussion forums - entries should be organised in threads

T-1-3 Discussion forums - possibility to order entries in chronological order and for topics

T-1-4 Discussion forums - Authorisation on level of the discussion forum

T-1-5 Discussion forums - condition of use

T-12 Discussion forums – moderated and non-moderated discussions

T-14 Discussion forums – rating of contributions and contributors (analysis of discussions

based on a relevance feedback)

T-42 Tags

I-5 Integration of components within the e-participation tools for scenario generation –

data exchange / annotation

I-17 Discussion about simulation results and decisions of human agents in simulation

7.7.2. Context of the component

Figure 38 Context of Discussion Forums Manager

A context of the Discussion Forums Manager is depicted in Figure 38. This manager is expected to

communicate with the following managers:

Discussion Forums

Manager

Annotation

Manager

Simulation

Manager

Calendar

Manager

Rule

Manager

Version

Manager

Process

Manager

Link

Manager

Document

Manager

Concept

Manager

Collaboration

Space

Manager

Content

Manager

Search

Manager

Chat

Manager

User

Manager

Notification

Manager

Polling and

Rating

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Collaboration space manager – to provide discussions as a part of the collaboration space

within the current project (process as a context)

 Search manager – provides search functionality through discussion forums/threads

 Notification manager – notifies users about new messages in relevant discussion

forums/threads

 User manager – ensures access authorisation to a particular forum/thread

 Polling and rating manager – provides possibility to poll on facts mentioned in a discussion

forum thread/message and/or rate messages in threads

 Content manager – to store and retrieve manager specific data

 Chat manager – to provide a discussion thread/message to finished chat

In addition to this, it is possible to utilise also Polling and Rating manager for creating a rating channel

linked to (a set of) discussion thread messages.

7.7.3. Supported use cases

Aim of the component is to provide discussion forum functionality to other relevant components as

well as to users. Different types of actors are provided, where User is most general one.

Figure 39 Use cases supported by Discussion Forums Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

The component represents a relatively independent module, which provides presented functions

related to discussion forums – to create forum/topic, to post messages and to publish, edit and delete

messages for moderated forums.

Discussion forum/discussion thread can be created for and linked with all relevant objects created in

the collaboration space component. Messages/entries can be organised in different types of order (e.g.

chronological, topical).

7.7.4. Functionality description

The purpose of the component is to provide a possibility for users to discuss various topics related to

policy development. First, an authorised user has to create a forum and after that a required number of

discussion threads can be created. Threads are linked with relevant objects to give participants

possibility to discuss relevant topics. For each forum/thread authorized users have to be defined.

In addition to it, the discussion forum manager provides some other managers with the possibility to

create forums/threads attached to artefacts these managers deal with (e.g. documents, knowledge

structures like social nets or agents, rules and rule/data dependency graphs, simulation outcome, etc.).

Each discussion forum and thread has its description, which is entered during forum/thread creation

and maintained later by an editor.

Authorized contributors can send messages to a forum/thread. For non-moderated forum, a message,

which was sent, is displayed immediately after it is received by the module. For moderated

forums/threads a message is waiting in the queue until it is approved by a moderator. Content

administrator has a right to edit and/or delete messages.

Users are able to attach a relevance feedback to contributions in discussion forums using a rating scale

(e.g. 2 – strongly agree, 1 – agree, 0 – neutral, -1 – disagree, -2 – strongly disagree) about the content.

After finishing a chat, responsible user is able to create discussion forum for following discussion in

the asynchronous way. Search is done on the side of Search manager, which directly searches in data

related to discussions within content repository.

7.7.5. Component API

Function Description

Create discussion

forum

To create a new discussion forum

Input: Identification of forum (forum name)

Output: discussion forum ―handler‖

Create discussion

thread

To create a new discussion forum thread

Input: Identification of thread (thread name), identification of the

relevant discussion forum

Output: discussion forum thread ―handler‖

Create message To create a new thread message

Input: Identification of relevant discussion forum and discussion thread

as well as parent message (to respond to some specific message)

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Output: message ―handler‖

Table 55 Discussion Forums Manager API

7.8. DOCUMENT MANAGER

7.8.1. Relevant user requirements

T-5 Content Management System (CMS) functionality

T-39 Computer-assisted Qualitative Data Analysis Software Tool – Coding of text passages

and clustering of codes

T-42 Tags

T-C1 Hints for interesting topics

I-24 Publishing of simulation results by the publishing tool (content management tool)

New requirements:

SOTA-1 Workflow engine

SOTA-2 Content/WYSIWYG

SOTA-3 File types supported

SOTA-4 Several document editors

SOTA-5 Real-time co-editing

SOTA-7 Memos

UC-5 Update description of the project

7.8.2. Context of the component

A context of the Document Manager is depicted in Figure 42. This manager is expected to

communicate with the following managers:

 Annotation manager – to give possibility to annotate documents

 Chat manager – to have possibility to save chat session in the form of a document for

documenting the chat session

 Collaboration space manager – to provide place, where documents will be arranged together

with other ones

 Content manager – to utilize content repository functionality

 Notification manager – to use notification functionality related to document-based events

 Search manager – to provide full text search within documents combined with attribute-based

as well as metadata-based search

 Simulation manager – to document simulations (simulation outputs – model-based scenarios)

 User manager – to provide document access rights verification

 Version manager – to provide versioning functionality during document development

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 40 Context of Document Manager

7.8.3. Supported use cases

The aim of the component is to provide document management functionality to users (functionality of

the manager as well as mediated functionality of other relevant components). Component represents a

relatively independent module, which provides presented functions related to documents handling - to

create, edit, delete, version and tag documents. In the presented use case diagram, User actor

represents any user-related actor and Manager represents any manager (e.g. Chat, Simulation) that

uses functionality of Document manager.

Documents are organized within a collaboration space and can be linked with all relevant objects.

Presented functionality supposes the possibility to create a new document as a native document

created by means of the designed system (internal editor) or by uploading documents of different

formats.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 41 Use cases supported by Document Manager

7.8.4. Functionality description

The Document manager provides support for full life-cycle (workflow) of documents - creation,

editing and deletion of various types of documents. Created documents are organized in one part of the

collaboration space (document library) and are provided to other users after publishing them by

owners (creators) of the documents.

A user is provided with the functionality to create a new document. In the case versioning is switched

on, an initial version (version one) of the document is created. The document can be opened

immediately after its creation or the action can be postponed. An open document can be edited and

tagged – some parts of the document can be highlighted and linked to other object of the system

(utilizing functionality of Annotation Manager). In the case versioning is switched off, document can

be deleted from the system.

New documents can be created also by uploading various types of documents - text files (e.g. DOC,

PDF, ODT, etc.), spreadsheets, presentations, etc.

Various metadata are maintained for documents. Some of the metadata are entered by user during

document creation process (i.e. description of the document itself), some are maintained during

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

document life-cycle automatically (owner, creation and access time, etc.). Manually entered metadata

can be edited by an authorized user. Displaying of metadata is also provided by the component.

New document – a document just created or a new version of some existing document - is accessible

for the owner of document. To provide access to the document to other users, the document has to be

published by its owner.

Search is done on the side of Search manager, which directly searches in data related to documents

within content repository.

7.8.5. Component API

Function Description

Create document To create a new document

Input: description of document

Output: document ID

Get document

metadata

To get document metadata

Input: document ID

Output: document metadata

Get document access

rights

To get document’s access rights

Input: document ID, user

Output: access rights

Table 56 Document Manager API

7.9. LINK MANAGER

7.9.1. Relevant user requirements

T-23 PM (Analysis) - Qualitative representation of the simulation results

T-39 Computer-assisted Qualitative Data Analysis Software Tool – Coding of text passages

and clustering of codes

T-40 Computer-assisted Qualitative Data Analysis Software Tool – flexible querying of

codes and issues

T-41 Computer-assisted Qualitative Data Analysis Software Tool – statistics

FR01_PM PM (Transformation process) - Define initial policy modelling aspects

FR02_PM PM (Transformation process) - Stakeholder extraction

FR03_PM PM (Transformation process) - Environment generation

FR04_PM PM (Transformation process) - Goal definition

FR05_PM PM (Transformation process) - Rule generation

FR06_PM PM (Transformation process) - Assumption definition

FR07_PM PM (Modelling process) - Agent type creation

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

FR08_PM PM (Modelling process) - Agents at different aggregation levels

FR09_PM PM (Modelling process) - Exogenous factors

FR10_PM PM (Modelling process) - Environment definition - general

TP-1 PM (Analysis) – Within-timestep dependency graph visualisation

TP-2 PM (Analysis) – Experiment and rule development browser

TP-3 PM (Analysis) - Narrative output

NFR01 PM (Transformation process) - Data representation

I-2 Transformation table – connection of context-specific information within the Scenario

Generation and Policy Modelling process in ICT toolbox

I-5 Integration of components within the e-participation tools for scenario generation –

data exchange / annotation

I-12 Support for direct export/import of information between scenario generation process

and policy modelling

I-14 Maintaining of scenarios and rules within the ICT toolbox

I-25 Integration of policy modelling tool and simulation / analysis tools – data exchange /

annotation

I-40 Transition table browser

New requirements:

UC-10 Development of social network

7.9.2. Context of the component

Figure 42 Context of Link Manager

Link

Manager

Annotation

Manager

Simulation

Manager

Content

Manager

Search

Manager

Rule

Manager

Version

Manager

Process

Manager

User

Manager

Collaboration

Space

Manager

Notification

Manager

Calendar

Manager

Polling and

Rating

Manager

Discussion

Forums

Manager

Document

Manager

Chat

Manager

Concept

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

A context of the Link Manager is depicted in Figure 42. This manager is expected to communicate

with the following managers:

 Annotation manager – to provide functionality for creation of links between evidence-based

data and conceptual description elements

 Content manager – to store and retrieve links objects to/from the content repository

 Concept manager – to create and use concepts from conceptual descriptions (CCD elements)

 Process manager – to retrieve process specific information playing the role of a context

 Rule manager – to provide links objects and functionality for definition and evaluation of rules

and agents

 Simulation manager – to provide links objects and functionality for definition and evaluation

of simulation models and simulations

 Search manager – to provide search in link objects and its metadata

 User manager – to obtain information on access rights and roles played by users

 Version manager – to support versioning in storage and retrieving of link objects

7.9.3. Supported use cases

The component provides service for creation and management of links between different parts of the

data model within OCOPOMO scenario analysis and policy modelling processes. All this

functionality is available for specific managers related to such processes. Links are helpful in

evidence-based understanding of data, models and simulations.

The component is able to work with link objects – create, access, modify and remove. The presented

use cases show processing and manipulations with such objects. In general, component provides

services for other managers (Annotation, Rule, etc.) to create, modify, remove and access links (with

their specific metadata), and use content repository to store and retrieve links (low ‗data‘ level of links

definitions – persistence).

Visualisation of concepts is expected to be provided by other components (Rule manager, Annotation

manager, etc.). Links are connecting data sources (text annotations) with concepts in conceptual

descriptions, hierarchy of concepts, actors in policy modelling process (social networks), rules, agents,

and simulation models. One of the main objectives for links objects is to provide evidence-based

connection of simulation results and modelling objects with real information from data sources.

Concepts are modelled using different manager (Concept manager). Links can be versioned using

versioning support of another manager (Version manager) during the process of link storage.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 43 Use cases supported by Link Manager

7.9.4. Functionality description

The component serves as a ‗middleware‘ between managers for direct (user-based) support of scenario

analysis and policy modelling process and low-level repository storage, where links for knowledge-

based connection of data sources and conceptual elements are created and managed. For example,

Rule manager is using already created concepts (from Annotation manager) and adds links to them,

but also is able to create other concepts and new links in order to create sufficient knowledge base for

creation of a simulation model. So the main objectives are:

 to provide methods for creation of links between different types of structured information

(data sources, text, rules, agents, actors, networks of them, etc.) with metadata definition

according to identified OCOPOMO data model and data flow

 to provide links (on demand) for other components

 to support persistence of links within content repository – storage and retrieval of links and

their metadata

 to support versioning of links within repository (using Version manager)

More details regarding potential links definitions is written within specialised components for scenario

analysis and policy modelling (Annotation manager, Rule manager, Simulation manager). In general,

links are one of the crucial parts of the data model for linked structured information from evidence-

based data to simulation models (with agents and rules) where conceptual descriptions (CCD) reside in

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

the middle. Search is done on the side of Search manager, which directly searches in data related to

links within content repository.

7.9.5. Component API

Function Description

Create link To create link between defined sources.

Input: linked object 1 – a definition of the first source for one side of

link, can be of different type (data source, annotation, concept, etc.)

linked object 2 – a definition of the second source for the other side of

link

Output: link – an identification of link between input objects with

metadata describing link details

Modify concept To modify link definition and data objects.

Input: link – an identification of a link object

change specification object – an object with structured identification of

changes in link definition, data objects or metadata

Output: result type – to identify whether update of link was successful or

failed

Get concept To obtain link from repository storage.

Input: link – an identification of a link

Output: link object – retrieved object of specified link with connection to

linked objects and metadata information

Table 57 Link Manager API

7.10. NOTIFICATION MANAGER

7.10.1. Relevant user requirements

T-24 News functionality

T-28 Shared calendar with events related to the current processes

T-29 Newsletter

T-30 RSS

T-34 E-mail notification system

T-C1 Hints for interesting topics

I-4 Creation of stakeholder groups for the scenario generation process

I-23 Creation of stakeholders groups for policy modelling process

I-7 Integration of components within the e-participation tools for scenario generation –

workspace

I-32 Workflow support

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

I-F-15 User profile

I-F-I6 Personalise overview

I-NF-11 Help and assistance

New requirements:

UC-2 Invitation – send and receive

7.10.2. Context of the component

Figure 44 Context of Notification Manager

A context of the Notification Manager is depicted in Figure 44. This manager is expected to

communicate with the following managers:

 Calendar manager – to support reminder functionality for calendar events and notification of

their creation/modification

 Collaboration space manager – to support notification functionality for collaboration space

within current project (process)

 Document manager – to support notification functionality for document management utilities

(creation/modification of documents/resources)

 Discussion forums manager – to support notification functionality for discussion forums

(creation/modification of discussion elements)

 Polling and Rating manager – to support polls and ratings with notification functionality

 Process manager – to retrieve process specific information playing the role of a context and

support notification events of process changes within the system

 User manager – to obtain information on access rights and roles played by users

Notification

Manager

Collaboration

Space

Manager

Calendar

Manager

Process

Manager

Polling and

Rating

Manager

Discussion

Forums

Manager

Document

Manager

User

Manager

Annotation

Manager

Simulation

Manager

Content

Manager

Search

Manager

Rule

Manager

Version

Manager

Link

Manager

Concept

Manager

Chat

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.10.3. Supported use cases

The component provides services to other components and users for usage of notification functionality

through different channels. It also supports creation of such messages (events) through user interface

(or its parts) and automatically using API for other parts of the platform. In provided use case diagram

Manager actor represents any manager and User actor any user-related actor that uses notification

(publishing) service of Notification manager.

Figure 45 Use cases supported by Notification Manager

The component represents a service for notification of users using selected channels like RSS, e-mail,

news, newsletter, etc. Main user-based functionality is in user interface subcodes, which can be used

for preparing such messages (events) within collaboration space interfaces and select specific

channels. Also it is possible (for some channels) to specify target group of users. Access rights are

checked in order to differentiate usage of the notification service according to particular roles.

One part of the notification process is transformation of written notification text (from user interface

or component) into suitable form for selected channels.

Another option (but in core implementation quite similar) is to provide notification API to other

components. In general, also user interface part of the collaboration space for direct user notification

can be seen as a 'subcomponent' of Notification manager, which only (after the moment of user input)

uses API of its 'parent' component. Also in this API component can setup text for notification, select

channels and target a group of users (if needed).

7.10.4. Functionality description

The component serves as a service for other components or some specific subcodes of user interfaces

within the system in order to notify with new changes, actions, documents, etc. Functionality (both for

users and components) includes:

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 preparation of message for notification - text version specified by user or object from the data

model (from which notification is specified)

 selection of channels for notification and specification of a target group of users

 transformation (automatically) of message or object into all channel-specific formats with

addition of necessary context information and/or any links to resources (if applicable)

 sending (publishing) notification through selected channels to target group of users

According to current requirements it is expected to provide different channels like:

 RSS feeds

 E-mail notification

 News

 Newsletter

 Hints

 Help and assistance

All of the notification can be context-specific and its creation should be also controlled by the access

rights from the user management component.

7.10.5. Component API

Function Description

Publish notification To send (publish) notification message through selected channels to a

specific target group of users (components).

Input: notification message – a message for notification (can be based on

some specific data object)

settings – selected channels with identified target group of users

Output: result type – to identify whether the sending was successful or

failed

Table 58 Notification Manager API

7.11. POLLING AND RATING MANAGER

7.11.1. Relevant user requirements

T-7 Opinion polling tool – open forms

T-8 Opinion polling tool – participation of users in polls – one vote per person

T-9 Opinion polling tool – participation of users in polls – possibility to modify the

answers provided (versioning)

T-10 Opinion polling tool – different types of questions & answers

T-11 Opinion polling tool – presentation of the results

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

T-14 Discussion forums – rating of contributions and contributors (analysis of discussions

based on a relevance feedback)

T-25 Commenting functionality

T-42 Tags

T-C2 News – rating/polling functionality

I-10 Opinion polling about the current version of scenario generation resources

7.11.2. Context of the component

Figure 46 Context of Polling and Rating Manager

A context of the Polling and Rating Manager is depicted in Figure 46. This manager is expected to

communicate with the following managers:

 Collaboration space manager – to provide polls functionality as a part of the collaboration

space within the current project (process)

 Content manager – to store and retrieve data related to polls and ratings (feedbacks) to/from

the content repository

 Discussion forums manager – to provide rating functionality in discussion forums (relevance

feedback) and analysis based on such rating (ranking of authors)

 Notification manager – to announce polls and their results

 User manager – to obtain information on access rights and roles played by users

Polling and Rating

Manager

Annotation

Manager

Simulation

Manager

Calendar

Manager

Search

Manager

Rule

Manager

Version

Manager

Process

Manager

Link

Manager

Document

Manager

Concept

Manager

Chat

Manager

Collaboration

Space

Manager

Notification

Manager

Content

Manager

Discussion

Forums

Manager

User

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.11.3. Supported use cases

The component provides services to users for creation of polls in order to retrieve users‘ feedback for

some questions. Another type of functionality is rating of contributions within discussion forums,

which is provided using API. In the presented use case diagram, User actor represents any user-related

actor and Poll creator is generally any user which is authorized for creation and management of polls.

Figure 47 Use cases supported by Polling and Rating Manager

The component represents user interface for opinion polls. Users are able to create a poll by preparing

question(s), inviting and notifying the users. A poll is finished according to specific settings –

manually by poll creator, automatically when every invited user voted or when some amount of time

for opening of poll is finished. Of course, invited users are able to vote (including setting of poll where

users have more attempts for vote, if they change their mind).

Users are able to see results of the polls. Poll creator is also able to notify users about the results with

its additional comments attached to them. Otherwise, system will use notification automatically with

predefined presentation of results to involved users.

This component also provides service to another component – discussion forums. All users are able to

provide relevance feedback to discussion forum messages (simple relevance scale, e.g. from very bad

– through neutral – to very good). These feedbacks are analysed using discussion forum analysis

algorithms and can be used to rank users according to feedback on their contributions. Therefore users

can be more respectful if their rankings are high.

7.11.4. Functionality description

The component serves as a user interface for polls (and partially for user interface subcodes of rating),

and also as a service for rating functionality (relevance feedback), especially for discussion forum

messages. Therefore functionality includes:

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 creation of poll – creator specifies question(s), settings for management of poll (how it is

finished, if users are able to change vote while poll is active, etc.), invites users and notifies

them about poll (automatic support)

 close poll – it can be closed in different ways, e.g. manually by poll creator, automatically

when every invited user voted or after some time deadline

 vote – user is able to vote, if it is possible then he/she can change vote during active poll

 view results – results are only generated automatically and system can notify the user

 notify users about results – creator can add some comments and interpretation to automatically

created results and then notify the users manually

 rating functionality – manager provides rating service to discussion forums in order to make

relevance feedback about contributions of users

 ranking of users – discussion analysis allows the component to provide rank of the users

(absolute or relative) according to feedbacks on their own messages (can be extended using

subsets of users and topics)

It is expected that polls have more modes of work and functionality (setup by settings), e.g. different

types of questions/answers, multiple choices, edit vote function (if needed). For storage and retrieving

of manager-specific data content repository is used. Context is (intentionally) shared using

collaboration space and its personalisation and/or customisation to current process. All actions are also

controlled by the access rights from the user management component.

7.11.5. Component API

Function Description

Insert relevance

feedback

To rate the message in discussions with relevance feedback.

Input: message – an identification of a message

feedback – value of relevance chosen by user

Output: result type – to identify whether the rating action was successful

or failed

Get ranking of user To obtain the rank of selected user according to relevance feedback on

his/her messages.

Input: user – an identification of a user

Output: ranking – user‘s authority according to discussion analysis in

form of absolute or relative ranking number

Table 59 Polling and Rating Manager API

7.12. PROCESS MANAGER

7.12.1. Relevant user requirements

I-1 ICT toolbox functionality provided through one portal-based interface

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

I-2 Transformation table – connection of context-specific information within the Scenario

Generation and Policy Modelling process in ICT toolbox

I-3 Starting the scenario generation process - initial scenario

I-11 Closing the scenario generation process / versioning

I-4 Creation of stakeholder groups for the scenario generation process

I-7 Integration of components within the e-participation tools for scenario generation –

workspace

I-10 Opinion polling about the current version of scenario generation resources

I-12 Support for direct export/import of information between scenario generation process

and policy modelling

I-13 Control of Scenario Generation process phases

I-15 Support for the policy modelling tool to create a new scenario generation iteration

I-23 Creation of stakeholders groups for policy modelling process

I-19 Log of activities within scenario generation

I-20 Log of activities within policy modelling / simulation

I-32 Workflow support

I-F-I6 Personalise overview

New requirements:

SOTA-1 Workflow engine

UC-1 Rights management

UC-2 Invitation – send and receive

UC-3 Send request for invitation

UC-4 Initiate project

7.12.2. Context of the component

A context of the Process Manager is depicted in Figure 48. This manager is expected to communicate

with the following managers:

 Annotation manager – to provide process-specific information to particular manager and

obtain current process-specific changes

 Collaboration space manager – to provide process-specific information to particular manager

and obtain current process-specific changes; to reflect current process status in collaboration

space settings/features

 Concept manager – to provide process-specific information to particular manager

 Content manager – to store and retrieve information related to process/workflow management

(current process status, process definition/flow, etc.)

 Link manager – to provide process-specific information to particular manager

 Notification manager – to publish/notify users about process changes and status (and related

artefacts) through different channels (email, news, newsletter, RSS, etc.)

 Rule manager – to provide process-specific information to particular manager

 Search manager – to provide process-specific information to particular manager; to support

search in process-specific information (if needed)

 Simulation manager – to provide process-specific information to particular manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 User manager – to obtain information on access rights and roles played by users

 Version manager – to support versioning in storage and retrieving information related to

process management

Figure 48 Context of Process Manager

7.12.3. Supported use cases

The component mainly provides services to other components, it represents a part of the system

responsible for process definition and status, playing the role of a context within the platform. In

provided use case diagram Manager actor represents any manager that uses context service of Process

manager. User (Initiator) is responsible for creation of a new project (process), User (Workflow) is

any user/actor which is able to manage workflow steps. User-related steps will have their own user

interface within the application.

The main objective is to provide context information about the current process and its status.

According to this information most of the other components customise their work (especially

collaboration space). Therefore context information should be provided as a service to other

components.

The process initiation (creation of a project and respective shared space) is also supported within

manager's use cases. Process management then controls running process(es) and makes all context

information stored in correct form. Executing of processes is expected to be simple and only includes

activities available within the platform (without any external services or complex subprocesses).

Process-specific changes can be obtained also from other components.

Process

Manager

Annotation

Manager

Collaboration

Space

Manager

Notification

Manager

Simulation

Manager

Content

Manager

Search

Manager

Rule

Manager

Version

Manager

Link

Manager

Concept

Manager

User

Manager

Calendar

Manager

Polling and

Rating

Manager

Discussion

Forums

Manager

Document

Manager

Chat

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

One of the process definition elements is to provide context-specific access rights, but this will be

done using User manager with context information from Process manager. Of course, access rights for

management of process itself should be also defined there.

Figure 49 Use cases supported by Process Manager

7.12.4. Functionality description

The component serves as a context owner and provider. It is also possible to manage process using this

manager, but it is expected to have static composition of workflow activities, prepared only for

identified basic process definition (policy modelling process). This will be done off-line in design

phase of the platform directly and manually for supported policy modelling process. It includes:

 definition of correct initiation of the process (project)

 definition of basic states of the workflow (state entities)

 definition of requirements for changing between states (input/output of tasks or activities)

 description of available tools and functionality (and details regarding usage of collaboration

space and repositories) within particular steps

The current process status is then available as context information (process, current state, general

process/state settings, specific process/state settings) and is provided to other components for their

own customisation and usage. Some simple mechanism should be supported with basic workflow

definition support, where human tasks and readability are well matched (e.g. JBPM from JBoss).

Information related to process management is stored and retrieved using content repository and can be

versioned according to process state changes. Content repository objects of process-specific data are

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

also available for search, but in direct connection to repository utilities (Content manager), therefore

service provided by the process component is not needed.

7.12.5. Component API

Function Description

Initiate process To initiate new process instance in order to start new process execution.

Input: process definition – a definition of process for initiation with

necessary general and specific details

Output: process instance – an instance of the process with formal

description of the current context

Provide context To provide context (current process) information to other components.

Input: process instance identification – an identification of a current

process for retrieving correct instance details

Output: context – an object with current process details

Table 60 Process Manager API

7.13. RULE MANAGER

7.13.1. Relevant user requirements

FR01_PM PM (Transformation process) - Define initial policy modelling aspects

FR02_PM PM (Transformation process) - Stakeholder extraction

FR03_PM PM (Transformation process) - Environment generation

FR04_PM PM (Transformation process) - Goal definition

FR05_PM PM (Transformation process) - Rule generation

FR06_PM PM (Transformation process) - Assumption definition

FR07_PM PM (Modelling process) - Agent type creation

FR08_PM PM (Modelling process) - Agents at different aggregation levels

FR09_PM PM (Modelling process) - Exogenous factors

FR10_PM PM (Modelling process) - Environment definition – general

NFR02_PM PM (Transformation process) - Language transition

NFR04_PM PM (Modelling process) – End states

NFR04_PM PM (Modelling process) – Initial model definition (Beginner‘s mode)

NFR05_PM PM (Modelling process) – Iterations (Expert‘s mode)

NFR06_PM PM (Modelling process) – Model description

NFR07_PM PM (Modelling process) – General model description

I-12 Support for direct export/import of information between scenario generation process

and policy modelling

http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-language-transition

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

I-14 Maintaining of scenarios and rules within the ICT toolbox

I-25 Integration of policy modelling tool and simulation / analysis tools – data exchange /

annotation

I-30 Translation of agent rules from a tool neutral syntax into simulation back-end

language

I-40 Transition table browser

New requirements:

SOTA-6 Information structuring

UC-9 Network visualisation

UC-10 Development of social network

7.13.2. Context of the component

Figure 50 Context of Rule Manager

A context of the Rule Manager is depicted in Figure 50. This manager is expected to communicate

with the following managers:

 Concept manager – to retrieve and store conceptual knowledge structures (e.g. hierarchies,

tuples, dependencies and networks, etc.)

 Content manager – to store and retrieve modelling elements (agents, fact templates, rules, etc.)

 Link manager – to store information on relations between objects (knowledge structures

and/or modelling elements) and to search for objects related to a given object.

 Process manager – to retrieve process specific information playing the role of a context

 Search manager – to search for an object (knowledge structure or modelling element)

 Simulation manager – to export formal knowledge bases

Rule

Manager

Simulation

Manager

Search

Manager

Version

Manager

Annotation

Manager

Calendar

Manager

Polling and

Rating

Manager

Content

Manager

Link

Manager

Concept

Manager

Collaboration

Space

Manager

User

Manager

Process

Manager

Chat

Manager

Discussion

Forums

Manager

Notification

Manager

Document

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 User manager – to obtain information on access rights and roles played by users

 Version manager – to store and retrieve information on different versions of objects

In addition to this, it is possible to utilise also other managers: Document manager for publishing

knowledge bases; Polling and Rating manager as well as Chat and Discussion forums communication

managers for creating a communication channel linked to (a set of) objects managed by the Rule

manager.

7.13.3. Supported use cases

The component mainly provides services to users, it represents a part of the system's front-end user

communicates with. Its aim is not to support other components (or only in a small extent). In the

presented use case diagram, User actor represents any user-related actor that uses functionality of Rule

manager.

Figure 51 Use cases supported by Rule Manager

The component basically represents a specialised 'editor' dedicated to dealing with special objects

(knowledge structures, modelling elements and knowledge bases). The presented use cases indicate

processing and manipulations with mentioned objects. This term should be subclassed (not shown due

to space limitation) – to represent the processed object types.

It is possible to create objects (objects themselves, their metadata and links to represent evidence for

the objects). In a similar way, objects can be updated or destroyed.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

All created objects can be visualised. It is possible to visualise not only objects themselves but follow

relations between objects and move back and forth between objects and their evidences. Moreover,

different versions of objects can be compared and their differences can be visualised as well.

Semiformal object representations can be transformed into a formal representation of knowledge

bases. This formal representation enables to perform different kinds of tests to ensure required

characteristics of generated formal knowledge bases.

7.13.4. Functionality description

The component serves as a part of a bridge connecting evidence-based scenarios with formal models.

Its aim is threefold:

 to further elaborate and organise knowledge structures identified during scenario analysis

 to transform these knowledge structures into semiformal representation of modelling elements

 to generate formal knowledge bases from the semi-formal elements

In order to define main information and knowledge chunks, which form a base for subsequent

modelling activities, conceptual knowledge structures should be restructured and transformed. It is

expected that the following semiformal structures will be identified:

 hierarchies of objects (e.g. actor hierarchies)

 object-attribute-value tuples (e.g. actor skills)

 dependencies and networks (e.g. actor social network)

 priorities and orderings (e.g. actors)

 annotations (e.g. endorsement characteristics)

To support the creation and maintenance of these knowledge structures, the component enables basic

functionality to create them, modify as well as destroy them. Since the structures can be present in

different versions, it is possible to compare them, indicate differences and provide an analysis if

applicable (e.g. analysing identified social networks).

Knowledge structures should be turned into basic modelling elements. The production of the defining

elements of formal models (agents, facts, fact templates, RHS/LHS clauses, conditions, rules) is

supported on a level of creating, updating and deleting. In addition to modelling elements based on

acquired knowledge structures, it is possible to insert elements not based on evidence (magic elements

for which an expert/modeller serves as a reference since the elements are based on his/her intrinsic

knowledge).

The defined modelling elements, which are represented semiformally (e.g. using a pseudocode), can

be transformed into a formal knowledge base (or bases – one for each agent) and exported in an XML

format. In order to support the production of high quality bases, different kinds of analysis are

expected to be performed on the knowledge base (e.g. redundancy check, consistency and reachability

analysis).

All elements, the component manipulates with (knowledge structures, modelling elements, knowledge

bases) are expected to be interlinked in order to preserve the 'cause – result' relationship. If an object

(knowledge structure, modelling element) has an evidence/endorsement, then it will be linked to it.

These links enable visualisation of the dependence among different objects, enabling going back and

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

forth in this network (e.g. going from a formal rule in a knowledge base to semiformal modelling

elements and from a modelling element to supporting knowledge structures).

In order to support different views and/or different evolution stages, all elements can be versioned

(different versions of an object can exist) and versions of the same object can be compared to indicate

differences.

7.13.5. Component API

Function Description

Knowledge base

generation

To initiate transformation of semiformally represented modelling

elements into a formal knowledge base, respecting syntactical

requirements of target simulation rule engine.

Input: target engine – an identification of a simulation engine which is

expected to process the formal knowledge base

tag – an identification of a scope of generated knowledge base (only those

modelling elements are considered which comprise the tag in their

metadata)

Output: knowledge base – a formally represented knowledge base

expressed in the required syntax

Table 61 Rule Manager API

7.14. SEARCH MANAGER

7.14.1. Relevant user requirements

I-1 ICT toolbox functionality provided through one portal-based interface

I-6 Integration of components within the e-participation tools for scenario generation –

search

I-5 Integration of components within the e-participation tools for scenario generation –

data exchange / annotation

I-7 Integration of components within the e-participation tools for scenario generation –

workspace

I-19 Log of activities within scenario generation

I-20 Log of activities within policy modelling / simulation

I-F-I6 Personalise overview

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.14.2. Context of the component

Figure 52 Context of Search Manager

A context of the Search Manager is depicted in Figure 52. This manager is expected to communicate

with the following managers:

 Annotation Manager – to search in annotation elements/objects from data available within the

scenario analysis tool

 Calendar manager – to search in calendar-specific data

 Content manager – to search directly in content repository (if needed), especially in specific

metadata; can be used also to store and retrieve search-specific data (stored queries, search

settings, etc.)

 Chat manager – to search in chat messages from the previous chat sessions; Document

manager used to retrieve old chats

 Concept manager – to search in structured model for evidence-based conceptual descriptions

of problem data (known as CCD)

 Collaboration space manager – to allow and provide federated search in specific user interface

part of the collaboration space

 Document manager – to search in documents within the system

 Discussion forums manager – to search in discussion forums

 Link manager – to search in specific metadata about linking objects within the data in system

(where links are specific conceptual objects for support of evidence-based modelling that

connect CCD elements, data sources, simulation models, etc.)

 Process manager – to retrieve process specific information playing the role of a context

 Rule manager – to search in knowledge structure or modelling element (within rule bases,

models, etc.)

 User manager – to obtain information on access rights and roles played by users

Search

Manager

Annotation

Manager

Collaboration

Space

Manager

Calendar

Manager

Content

Manager

Process

Manager

Link

Manager

Discussion

Forums

Manager

Document

Manager

Concept

Manager

Chat

Manager

User

Manager

Notification

Manager

Simulation

Manager

Version

Manager

Polling and

Rating

Manager

Rule

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.14.3. Supported use cases

The component provides services for search in different data types / applications with possibility to

forward them and combine in specific user interface within collaboration space or to show them

individually per tools. In provided use case diagram Manager actor represents any manager that uses

search service of Search manager. User actor represents any user-related actor that uses functionality

of Search manager.

Figure 53 Use cases supported by Search Manager

The Search Manager supports all searching aspects in OCOPOMO. It is expected that search manager

helps in providing single entry point for all OCOPOMO‘s search needs. Different types of data are

searched in different manner:

 Search in users (collaboration space manager)

 Search in data within communication tools and document library

 Search in metadata related to communication tools and document library

 Search in knowledge-based objects specific for policy modelling process (annotations,

concepts, links, etc.)

7.14.4. Functionality description

The component serves as a general search module for supporting other components. Main aim of the

component is to provide search service in more transparent and interoperable way, while particular

searches can be run in different sessions, databases and repositories.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Search in users will be implemented within the collaboration space manager specific data (can be

stored in content repository).

Search in data within communication tools and document library can be available using application

(tools) specific data storage (if they have their own mechanism). Content repository (managed by

Content manager) will be used (where applicable).

Search in metadata and specific knowledge modelling elements (concepts, links, annotations) will be

available by the implementation or reuse of content repository services for search. User interface for

combined search is a part of the collaboration space (as other tools).

The following features are expected: 1.) The caller has to be able to define which type of search

should be carried out; 2.) It has to be possible to determine the best search type automatically by

evaluating the amount of available input data and other information concerning the search request.

7.14.5. Component API

Function Description

Search Search OCOPOMO’s sources according to a given request

Input: query – either a keyword-based simple query or a query prepared

for semantic matching (containing requirements, capabilities, ...)

filters – constraints for filtering the search results in addition to automatic

filtering

Output: hits – matched data model elements

Table 62 Search Manager API

7.15. SIMULATION MANAGER

7.15.1. Relevant user requirements

T-16 Agent-based simulation tool

T-17 PM (Analysis) - Export of simulation-related data

T-18 Import of the previously exported simulation data

T-19 Previewing of a simulation

T-20 Preview simulation mode – level of details and/or time scale

T-21 Preview simulation mode – searching for a specified event

T-22 Preview simulation mode – focusing on a part of the used model

T-23 PM (Analysis) - Qualitative representation of the simulation results

T-32 PM (Gaming) – Role-playing games (single user)

T-33 PM (Gaming) – User interface for human player

FR11_PM PM (Simulation setup) - Setup world facts

FR12_PM PM (Simulation setup) - Setup initial agent facts

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

FR13_PM PM (Simulation setup) - Initial state definition

FR14_PM PM (Simulation termination) - End state

FR15_PM PM (Simulation termination) - Irregular termination events

FR16_PM PM (Simulation termination) - Regular termination events

FR17_PM PM (Simulation termination) - Adjustable parameters

FR18_PM PM (Simulation termination) - State validation

FR19_PM PM (Simulation termination) - Simulation start

FR20_PM PM (Simulation termination) - Simulation interrupt

FR21_PM PM (Simulation termination) - Simulation abort

FR22_PM PM (Experimentation) - User engagement in simulation

FR23_PM PM (Experimentation) - User Interaction

FR24_PM PM (Experimentation) - Gaming simulation interface

FR25_PM PM (Experimentation) - Change simulation parameters

FR26_PM PM (Experimentation) - Automated experimentation

FR27_PM PM (Gaming) - Feedback on simulation

TP-1 PM (Analysis) – Within-timestep dependency graph visualisation

TP-2 PM (Analysis) – Experiment and rule development browser

TP-3 PM (Analysis) - Narrative output

TP-5 PM (Analysis) - Visualisations of non-numerical outcomes/events

NFR08_PM PM (Simulation) – Event handling

NFR09_PM PM (Simulation) – Exception handling

NFR10_PM PM (Simulation) – Simulation visualisation

NFR11_PM PM (Simulation) – Parameter presentation

NFR12_PM PM (Simulation) – Parameter locking

NFR13_PM PM (Simulation) – State handling for inspection

NFR14_PM PM (Simulation) – Simulation execution

I-18 Comparison of simulations

I-22 Defining scenario for policy modelling

I-27 Simulation preview tool available from different physical locations – remote access

I-28 Action–based and rule-based role playing of stakeholders in simulation

I-20 Log of activities within policy modelling / simulation

I-29 Human actions analysis

I-34 Simulation back-end integrated with the ICT toolbox

I-39 Full dependency graph including dependency of rules on lagged clauses

New requirements:

SOTA-8 Non-RETE rule engine

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.15.2. Context of the component

Figure 54 Context of Simulation Manager

A context of the Simulation Manager is depicted in Figure 54. The manager is expected to

communicate with the following managers:

 Concept manager – to store modelling elements (e.g. new or modified rules)

 Content manager – to store and retrieve simulation related data (e.g. simulation context,

current simulation state)

 Document manager – to publish model-based scenarios

 Link manager – to store information on relations between objects (fact/rules and dependency

graphs, dependency graphs and simulation outputs). To search for objects related to a given

object.

 Process manager – to retrieve process specific information playing the role of a context

 Rule manager – to obtain formal knowledge bases

 User manager – to obtain information on access rights and roles played by users

 Version manager – to store and retrieve information on different versions of objects

In addition to this, it is possible to utilise also other managers: Polling and Rating manager as well as

Discussion forums manager and Chat manager for creating a communication channel linked to

simulation outputs.

Simulation

Manager

Annotation

Manager

Collaboration

Space

Manager

Notification

Manager

Calendar

Manager

Search

Manager

Polling and

Rating

Manager

Discussion

Forums

Manager

Chat

Manager

Version

Manager

User

Manager

Content

Manager

Concept

Manager

Process

Manager

Link

Manager

Rule

Manager

Document

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.15.3. Supported use cases

The component mainly provides services to users, it represents a part of the system's front-end user

communicates with. Its aim is not to support other components. In the presented use case diagram,

User actor represents any user-related actor that uses functionality of Simulation manager.

<<System>> is any OCOPOMO system/process component that uses import/export functionality of

Simulation manager.

Figure 55 Use cases supported by Simulation Manager

The core of the manager is a simulation engine able to run formal models utilising agent-based and

rule-based knowledge bases. It enables to run plain simulations (based on actual simulation setups) as

well as provides a rich set of opportunities to experiment with models including simulation gaming

when users play the role of agents.

This simulation engine is supported on both input and output sides. On the input hand, a knowledge

base is imported and transformed into data/rule dependency graphs on which the simulation engine is

able to operate. On the output hand, simulation output can be processed (visualised or exported for

further processing).

To support understanding about what is going within simulations as well as what relations can be

found between data chunks the manager manipulates with, rich visualisation functionality is offered. It

is possible to visualise artefacts as dependency graphs and simulation outputs as well as simulation

process and simulation status. In addition, it is possible to make comparisons between objects, identify

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

differences and visualise these differences. To understand mutual dependences, visualisation of

relations between objects is at the disposal.

7.15.4. Functionality description

The manager employs formal knowledge bases produced by the Rule manager. The knowledge bases

can be accepted in two formats – in XML as well as in the form of a programming code suitable for

the given manager.

In order to utilise a knowledge base, it must be converted into the form of a data/rule dependency

graph. To support users in understanding knowledge bases, it is expected that the manager provides

visualisation support – a possibility to graphically visualise data/rule dependency graphs as well as to

compare two dependency graphs, identify differences and visualise them.

The main functionality of the manager is the ability to run simulations. First, it is possible to setup a

simulation context (e.g. to define an initial state of all agents as well as the state of simulation

environment, select agents to be involved in simulation, setup world facts, stop conditions, etc.) as

well as simulation attributes (e.g. time granularity, termination events, etc.). After the setup is finished,

simulation can run. In addition to simple starting and running a simulation, a set of richer control

possibilities will be provided to users to experiment with the models, for example:

 interrupting simulations

 stepping simulations

 adjusting parameters

 restarting / resuming simulations

 export / import of simulation data

In order to support experimentation, simulations must be visualised (e.g. visualisation of current state

of agents' fact bases, current data dependency graph). To support users in testing and enhancing

dependency graphs, a possibility to experiment on-the-fly with rules (e.g. enabling/disabling rules,

modifying rules, adding rules) should be available as well. Another kind of experimentation is

simulation gaming (action-based or rule-based) – a user takes over the role of an agent and responds

on behalf of the agent according to his/her own mental model. Analysis of user's behaviour can

subsequently serve as a useful input material for modellers.

Simulation runs are expected to produce two types of output:

 audit trail – basically a log of all events which occur during a simulation run (with the

possibility to define which aspects are relevant enough to be logged)

 model-based scenario – a scenario produced as a text-based descriptions of actions of agents

and some account of the reasons for those actions (published using Document manager API)

To support users in understanding these outputs, the manager provides e.g. functionality enabling to

work with the outputs easier (e.g. different filtering levels based on the required level of details,

reduction of voluminous output to the main aspects, focusing on a part of the used model, selecting a

proper time scale, searching for a specific event, considering agents at different aggregation level,

qualitative representation, etc.). Comparing outputs of two simulation runs and identification of

differences between them is considered useful for users as well. In order to make a statistical analysis

of the produced outputs, the manager enables to export simulation outputs into a form accepted by an

external statistical package (currently the R package is considered).

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

A very useful feature enabling to understand relations between different artefacts used within the

modelling process is a possibility to move back and forth between events in simulation output and data

dependency graph as well as between (parts of) data dependency graph and elements of formal

knowledge base. This will complement similar functionality provided by Rule manager.

7.15.5. Component API

none (the manager does not provide functionality for other managers)

7.16. USER MANAGER

7.16.1. Relevant user requirements

T-1-4 Discussion forums - Authorisation on level of the discussion forum

T-37 Authorization/authentication issues are taken into account in individual tools

I-F-I1 Password reminder

I-F-I2 Removing profile

I-F-I3 Login

I-F-I4 User registration

I-F-I5 User profile

I-F-I6 Personalise overview

I-36 All personal preferences in one place

I-NF-4 Authentication

I-NF-5 Authorization

I-NF-6 Privacy

New requirements:

UC-1 Rights management

UC-2 Invitation – send and receive

UC-3 Send request for invitation

7.16.2. Context of the component

A context of the User Manager is depicted in Figure 56. This manager is expected to communicate

with the following managers:

 Annotation manager, Calendar manager, Chat manager, Concept manager, Discussion forums

manager, Document manager, Link manager, Notification manager, Polling and Rating

manager, Rule manager, Search manager, Simulation manager – to provide information on

access rights and roles played by users

 Process manager – to provide information on access rights and roles played by users; to

retrieve process specific information playing the role of a context

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Collaboration space manager – to provide information on access rights and roles played by

users; to support profile management for setting of collaboration space elements

Figure 56 Context of User Manager

7.16.3. Supported use cases

The component provides service for components to obtain access rights about the usage of the

functionality by some specific user and/or role. Other important issue is user registration and login, as

well as user profile management (which can be reused by other components for personalisation and

customization). In provided use case diagram Manager actor represents any manager that uses services

of User manager for checking access rights and profile management. Administrator represents an actor

with granted permission to modify user‘s role(s) and access rights. User actor is generally a registered

user. Unregistered user actor is a user which is from outside of the OCOPOMO site (he/she wants to

be registered in order to become User). Role-based access control (RBAC) will be used for access

rights management.

The component basically represents a service provider that enables to manage and retrieve access

rights to (almost) all components for their actions. There is also possibility to setup some access rights

dynamically using roles (where applicable, e.g. collaboration space, discussion forums, etc.), but most

of the actions are strictly defined in design time (using predefined roles for process and tool specific

actions/operations).

Non-registered user is also able to register (due to invitation) and get involvement within the system.

Administrator is able to setup access rights (using roles) to new users.

User

Manager

Annotation

Manager

Collaboration

Space

Manager

Notification

Manager

Simulation

Manager

Calendar

Manager

Search

Manager

Rule

Manager

Process

Manager

Polling and

Rating

Manager

Link

Manager

Discussion

Forums

Manager

Document

Manager

Concept

Manager

Chat

Manager

Content

Manager

Version

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 57 Use cases supported by User Manager

Another functionality provided by the component is user profile management. Every user is able to

update its own profile. This leads to better customization and personalisation of his/her tools and user

interfaces. User profile is then provided to other components in the same way as access rights

information.

7.16.4. Functionality description

The component serves as a provider of access rights for actions within the system, whether the user

can or cannot do some operation. All this information is stored and retrieved from this component data

structure. The basic question (of any component) then – ―Is it allowed for user X with some role Y to

do action A in current context C?‖ This is the used format for access rights query from any component

to this component (C is added automatically by connection to process management component) and it

is manager‘s basic service.

The second functionality is related to creation of new users (registration) and assignment of role and

access rights by the administration user. After user receives confirmation he/she is able to work with

the system on single sign-on basis using authentication service of the application server.

User is also able to manage its own profile with specific settings on tools and whole system, which are

helpful in making it more suitable for him/her in order to achieve better customization and

personalisation. User profile management (creation, update, removing - setup to default) is supported

by this component and combines settings for more tools and applications, which are working together

in the OCOPOMO platform.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.16.5. Component API

Function Description

Get access rights To obtain access rights about the authorization for actions within the

components.

Input: action – an object that describe action for which decision about the

access should be identified

user – an identification of user

role – an identification of user's role

Output: decision – answer for this specific access right (according to

current context and component)

Get user profile To obtain user profile in order to customize and personalise his/her view

of the system.

Input: user – an identification of user

Output: profile – object containing profile information of user (according

to current context and component)

Table 63 User Manager API

7.17. VERSION MANAGER

7.17.1. Relevant user requirements

T-5 Content Management System (CMS) functionality

T-8 Opinion polling tool – participation of users in polls – one vote per person

T-9 Opinion polling tool – participation of users in polls – possibility to modify the

answers provided (versioning)

I-11 Closing the scenario generation process / versioning

I-13 Control of Scenario Generation process phases

I-14 Maintaining of scenarios and rules within the ICT toolbox

I-26 Version control of process models and/or agent models

7.17.2. Context of the component

A context of the Version Manager is depicted in Figure 58. The manager is expected to communicate

with the following managers:

 Concept manager – to support versioning of concepts in CCD

 Content manager – to support versioning of content repository elements

 Document manager – to version of saved documents

 Link manager – to support versioning functionality for links

 Process manager – to support versioning functionality for process steps and resources

 Rule manager – versioning of rules

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Simulation manager – versioning support for simulation models

Figure 58 Context of Version Manager

7.17.3. Supported use cases

The aim of the component is to provide versioning functionality to other relevant components. In the

presented use case diagram, Manager actor represents any manager that uses functionality of Version

manager.

The component represents a closely coupled module, which provides versioning functionality for all

relevant modules – Concept, Document, Link, Process, Rule and Simulation managers play the role of

a user of this module.

Version

Manager

Annotation

Manager

Collaboration

Space

Manager

Notification

Manager

Calendar

Manager

Search

Manager

Polling and

Rating

Manager

Discussion

Forums

Manager

Chat

Manager

User

Manager

Simulation

Manager

Content

Manager

Rule

Manager

Process

Manager

Link

Manager

Document

Manager

Concept

Manager

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 59 Use cases supported by Version Manager

7.17.4. Functionality description

Version manager is responsible for switching on and off versioning of various relevant objects either

for individual objects or for all objects at once.

It is supposed to support versioning of several types of objects. Versioning allows storing several

versions of some concept presented in Concept Manager as well as several versions of some document

in Document Manager, workflow in Process Manager, rules/agents in Rule Manager and simulations

in Simulation Manager. Several versions of links associated in the frame of the Link Manager are also

available.

Switching versioning on/off in the frame of Content Manager means to switch versioning on/off for all

objects stored by means of the Content Manager, as mentioned above.

Managers are provided with the possibility to register new version of a versioned object (content,

document, workflow, simulation, rule, link), list all versions of a selected object and set up working

(actual, current) version of an object – the version of the object (document, content, simulation etc.)

which is used within the current session.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

7.17.5. Component API

Function Description

Switch object

versioning on

To switch versioning of an individual object on

Input: object ID

Output: none

Switch object

versioning off

To switch versioning of an individual object off

Input: object ID

Output: none

Switch space

versioning on

To switch versioning of the whole content space on

Input: space ID

Output: none

Switch space

versioning off

To switch versioning of the whole content space off

Input: space ID

Output: none

Register new version To register a new version of an object

Input: object

Output: assigned version

List all versions of

object

To list all versions of an object present within the system

Input: object or object ID

Output: list of available versions

Set up working version

of object

To set up a working version of an object

Input: object or object ID

Output: none

Table 64 Version Manager API

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

8. ARCHITECTURE VALIDATION

In order to validate the architecture, the following procedure is conducted. For each requirement,

which has been defined in this deliverable and in D1.1 [Bicking et al., 2010], it will be analysed if the

proposed architecture is able to fulfil it. This is done by evaluating which of the components proposed

is able to fulfil the requirement.

ID Name Priority Component

I-NF-2 Accessibility Must-have

I-28 Action–based and rule-based role
playing of stakeholders in simulation

Must-have Simulation Manager

T-16 Agent-based simulation tool Must-have Simulation Manager

I-36 All personal preferences in one place Nice-to-have User Manager

I-NF-4 Authentication Must-have User Manager

I-NF-5 Authorization Must-have User Manager

T-37 Authorization/authentication issues
are taken into account in individual
tools

Must-have User Manager

T-4 Chat Must-have Chat Manager

I-11 Closing the scenario generation
process / versioning

Must-have Process Manager, Version
Manager

T-25 Commenting functionality Must-have Polling and Rating Manager

I-18 Comparison of simulations Must-have Simulation Manager

T-39 Computer-assisted Qualitative Data
Analysis Software Tool – Coding of text
passages and clustering of codes

Must-have Annotation Manager,
Concept Manager, Document
Manager, Link Manager

T-40 Computer-assisted Qualitative Data
Analysis Software Tool – flexible
querying of codes and issues

Must-have Annotation Manager,
Concept Manager, Link
Manager

T-41 Computer-assisted Qualitative Data
Analysis Software Tool – statistics

Nice-to-have Annotation Manager,
Concept Manager, Link
Manager

T-5 Content Management System (CMS)
functionality

Must-have Content Manager, Document
Manager, Version Manager

I-13 Control of scenario generation process
phases

Must-have Process Manager, Version
Manager

I-4 Creation of stakeholder groups for the
scenario generation process

Must-have Collaboration Space
Manager, Notification
Manager, Process Manager

I-23 Creation of stakeholders groups for
policy modelling process

Must-have Collaboration Space
Manager, Notification
Manager, Process Manager

http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/accessibility
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/action2013based-and-rule-based-role-playing-of-stakeholders-in-simulation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/action2013based-and-rule-based-role-playing-of-stakeholders-in-simulation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/agent-based-simulation-tool
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/all-personal-preferences-in-one-place
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/authentication
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/authorization
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/authorization-authentication-issues-are-taken-into-account-in-individual-tools
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/authorization-authentication-issues-are-taken-into-account-in-individual-tools
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/authorization-authentication-issues-are-taken-into-account-in-individual-tools
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/chat
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/closing-the-scenario-generation-process-versioning
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/closing-the-scenario-generation-process-versioning
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/commenting-functionality
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/comparison-of-simulations
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/computer-assisted-qualitative-data-analysis-software-tool-2013-coding-of-text-passages-and-clustering-of-codes
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/computer-assisted-qualitative-data-analysis-software-tool-2013-coding-of-text-passages-and-clustering-of-codes
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/computer-assisted-qualitative-data-analysis-software-tool-2013-coding-of-text-passages-and-clustering-of-codes
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/computer-assisted-qualitative-data-analysis-software-tool-2013-flexible-querying-of-codes-and-issues
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/computer-assisted-qualitative-data-analysis-software-tool-2013-flexible-querying-of-codes-and-issues
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/computer-assisted-qualitative-data-analysis-software-tool-2013-flexible-querying-of-codes-and-issues
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/computer-assisted-qualitative-data-analysis-software-tool-2013-statistics
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/computer-assisted-qualitative-data-analysis-software-tool-2013-statistics
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/content-management-system-cms-functionality
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/content-management-system-cms-functionality
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/control-of-scenario-generation-process-phases
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/control-of-scenario-generation-process-phases
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/creation-of-stakeholder-groups-for-the-scenario-generation-process
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/creation-of-stakeholder-groups-for-the-scenario-generation-process
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/creation-of-stakeholders-groups-for-policy-modelling-process
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/creation-of-stakeholders-groups-for-policy-modelling-process

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

I-22 Defining scenario for policy modelling Must-have Simulation Manager

I-17 Discussion about simulation results
and decisions of human agents in
simulation

Must-have Discussion Forums Manager

T-1 Discussion forums Must-have Discussion Forums Manager

T-1-4 Discussion forums - Authorisation on
level of the discussion forum

Must-have Discussion Forums Manager,
User Manager

T-1-5 Discussion forums - condition of use Must-have Discussion Forums Manager

T-1-2 Discussion forums - entries should be
organised in threads

Must-have Discussion Forums Manager

T-1-3 Discussion forums - possibility to order
entries in chronological order and for
topics

Must-have Discussion Forums Manager

T-12 Discussion forums – moderated and
non-moderated discussions

Must-have Discussion Forums Manager

T-14 Discussion forums – rating of
contributions and contributors
(analysis of discussions based on a
relevance feedback)

Must-have Polling and Rating Manager

T-34 E-mail notification system Must-have Notification Manager

I-39 Full dependency graph including
dependency of rules on lagged clauses

Must-have Simulation Manager

I-NF-11 Help and assistance Must-have Notification Manager

T-C1 Hints for interesting topics Nice-to-have Annotation Manager,
Document Manager,
Notification Manager

I-29 Human actions analysis Should-have Simulation Manager

I-1 ICT toolbox functionality provided
through one portal-based interface

Must-have Collaboration Space
Manager, Process Manager,
Search Manager

T-18 Import of the previously exported
simulation data

Should-have Simulation Manager

I-5 Integration of components within the
e-participation tools for scenario
generation – data exchange /
annotation

Must-have Collaboration Space
Manager, Concept Manager,
Discussion Forums Manager,
Link Manager, Search
Manager

I-6 Integration of components within the
e-participation tools for scenario
generation – search

Must-have Search Manager

I-7 Integration of components within the
e-participation tools for scenario
generation – workspace

Must-have Collaboration Space
Manager, Notification
Manager, Process Manager,

http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/defining-scenario-for-policy-modelling
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-about-simulation-results-and-decisions-of-human-agents-in-simulation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-about-simulation-results-and-decisions-of-human-agents-in-simulation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-about-simulation-results-and-decisions-of-human-agents-in-simulation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-forums
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-forums-authorisation-on-level-of-the-discussion-forum
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-forums-authorisation-on-level-of-the-discussion-forum
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-forums-condition-of-use
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-forums-entries-should-be-organised-in-threads
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-forums-entries-should-be-organised-in-threads
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-forums-possibility-to-order-entries-in-chronological-order-and-for-topics
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-forums-possibility-to-order-entries-in-chronological-order-and-for-topics
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-forums-possibility-to-order-entries-in-chronological-order-and-for-topics
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-forums-2013-moderated-and-non-moderated-discussions
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-forums-2013-moderated-and-non-moderated-discussions
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-forums-2013-rating-of-contributions-and-contributors-analysis-of-discussions-based-on-a-relevance-feedback
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-forums-2013-rating-of-contributions-and-contributors-analysis-of-discussions-based-on-a-relevance-feedback
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-forums-2013-rating-of-contributions-and-contributors-analysis-of-discussions-based-on-a-relevance-feedback
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/discussion-forums-2013-rating-of-contributions-and-contributors-analysis-of-discussions-based-on-a-relevance-feedback
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/e-mail-notification-system
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/full-dependency-graph-including-dependency-of-rules-on-lagged-clauses
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/full-dependency-graph-including-dependency-of-rules-on-lagged-clauses
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/help-and-assistance
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/hints-for-interesting-topics
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/human-actions-analysis
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/ict-toolbox-functionality-provided-through-one-portal-based-interface
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/ict-toolbox-functionality-provided-through-one-portal-based-interface
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/import-of-the-previously-exported-simulation-data
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/import-of-the-previously-exported-simulation-data
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/integration-of-components-within-the-e-participation-tools-for-scenario-generation-2013-data-exchange-annotation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/integration-of-components-within-the-e-participation-tools-for-scenario-generation-2013-data-exchange-annotation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/integration-of-components-within-the-e-participation-tools-for-scenario-generation-2013-data-exchange-annotation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/integration-of-components-within-the-e-participation-tools-for-scenario-generation-2013-data-exchange-annotation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/integration-of-components-within-the-e-participation-tools-for-scenario-generation-2013-search
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/integration-of-components-within-the-e-participation-tools-for-scenario-generation-2013-search
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/integration-of-components-within-the-e-participation-tools-for-scenario-generation-2013-search
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/integration-of-components-within-the-e-participation-tools-for-scenario-generation-2013-workspace
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/integration-of-components-within-the-e-participation-tools-for-scenario-generation-2013-workspace
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/integration-of-components-within-the-e-participation-tools-for-scenario-generation-2013-workspace

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Search Manager

I-25 Integration of policy modelling tool
and simulation / analysis tools – data
exchange / annotation

Should-have Concept Manager, Content
Manager, Link Manager, Rule
Manager

I-NF-10 Integrity Must-have

I-20 Log of activities within policy modelling
/ simulation

Must-have Process Manager, Search
Manager, Simulation
Manager

I-19 Log of activities within scenario
generation

Must-have Annotation Manager, Process
Manager, Search Manager

I-F-I3 Login Must-have User Manager

I-NFT-8 Look and feel Must-have

I-14 Maintaining of scenarios and rules
within the ICT toolbox

Must-have Concept Manager, Link
Manager, Rule Manager,
Version Manager

I-35 Multilingual interface Must-have

T-24 News functionality Must-have Notification Manager

T-C2 News – rating/polling functionality Should-have Polling and Rating Manager

T-29 Newsletter Must-have Notification Manager

I-NF-7 Operational Must-have

I-10 Opinion polling about the current
version of scenario generation
resources

Must-have Polling and Rating Manager,
Process Manager

T-10 Opinion polling tool – different types
of questions & answers

Must-have Polling and Rating Manager

T-7 Opinion polling tool – open forms Must-have Polling and Rating Manager

T-8 Opinion polling tool – participation of
users in polls – one vote per person

Must-have Polling and Rating Manager,
Version Manager

T-9 Opinion polling tool – participation of
users in polls – possibility to modify the
answers provided (versioning)

Must-have Polling and Rating Manager,
Version Manager

T-11 Opinion polling tool – presentation of
the results

Must-have Polling and Rating Manager

I-F-I1 Password reminder Must-have User Manager

I-F-I6 Personalise overview Must-have Collaboration Space
Manager, Notification
Manager, Process Manager,
Search Manager, User
Manager

T-17 PM (Analysis) - Export of simulation-
related data

Should-have Simulation Manager

TP-3 PM (Analysis) - Narrative output Must-have Concept Manager, Link

http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/integration-of-policy-modelling-tool-and-simulation-analysis-tools-2013-data-exchange-annotation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/integration-of-policy-modelling-tool-and-simulation-analysis-tools-2013-data-exchange-annotation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/integration-of-policy-modelling-tool-and-simulation-analysis-tools-2013-data-exchange-annotation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/integrity
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/log-of-activities-within-policy-modelling-simulation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/log-of-activities-within-policy-modelling-simulation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/log-of-activities-within-scenario-generation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/log-of-activities-within-scenario-generation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/login-1
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/look-and-feel
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/maintaining-of-scenarios-and-rules-within-the-ict-toolbox
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/maintaining-of-scenarios-and-rules-within-the-ict-toolbox
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/multilingual-interface
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/news-functionality
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/news-2013-rating-polling-functionality
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/newsletter
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/operational
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/opinion-polling-about-the-current-version-of-scenario-generation-resources
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/opinion-polling-about-the-current-version-of-scenario-generation-resources
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/opinion-polling-about-the-current-version-of-scenario-generation-resources
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/opinion-polling-tool-2013-different-types-of-questions-answers
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/opinion-polling-tool-2013-different-types-of-questions-answers
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/opinion-polling-tool-2013-open-forms
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/opinion-polling-tool-2013-participation-of-users-in-polls-2013-one-vote-per-person
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/opinion-polling-tool-2013-participation-of-users-in-polls-2013-one-vote-per-person
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/opinion-polling-tool-2013-participation-of-users-in-polls-2013-possibility-to-modify-the-answers-provided-versioning
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/opinion-polling-tool-2013-participation-of-users-in-polls-2013-possibility-to-modify-the-answers-provided-versioning
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/opinion-polling-tool-2013-participation-of-users-in-polls-2013-possibility-to-modify-the-answers-provided-versioning
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/opinion-polling-tool-2013-presentation-of-the-results
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/opinion-polling-tool-2013-presentation-of-the-results
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/password-reminder
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/personalise-overview
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-analysis-export-of-simulation-related-data
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-analysis-export-of-simulation-related-data
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-analysis-narrative-output

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Manager, Simulation
Manager

T-23 PM (Analysis) - Qualitative
representation of the simulation
results

Must-have Concept Manager, Link
Manager, Simulation
Manager

TP-5 PM (Analysis) - Visualisations of non-
numerical outcomes/events

Must-have Simulation Manager

TP-2 PM (Analysis) – Experiment and rule
development browser

Should-have Concept Manager, Link
Manager, Simulation
Manager

TP-1 PM (Analysis) – Within-timestep
dependency graph visualisation

Must-have Concept Manager, Link
Manager, Simulation
Manager

FR26_PM PM (Experimentation) - Automated
experimentation

Must-have Simulation Manager

FR25_PM PM (Experimentation) - Change
simulation parameters

Must-have Simulation Manager

FR22_PM PM (Experimentation) - User
engagement in simulation

Must-have Simulation Manager

FR23_PM PM (Experimentation) - User
interaction

Must-have Simulation Manager

FR24_PM PM (Experimentation/Gaming) -
Gaming

Must-have Simulation Manager

FR27_PM PM (Gaming) - Feedback on simulation Must-have Simulation Manager

T-32 PM (Gaming) – Role-playing games
(single user)

Must-have Simulation Manager

T-33 PM (Gaming) – User interface for
human player

Must-have Simulation Manager

FR07_PM PM (Modelling process) - Agent type
creation

Must-have Concept Manager, Link
Manager, Rule Manager

FR08_PM PM (Modelling process) - Agents at
different aggregation levels

Must-have Concept Manager, Link
Manager, Rule Manager

NFR03_PM PM (Modelling process) - End states Must-have Rule Manager

FR10_PM PM (Modelling process) - Environment
definition - general

Must-have Concept Manager, Link
Manager, Rule Manager

FR09_PM PM (Modelling process) - Exogenous
factors

Must-have Concept Manager, Link
Manager, Rule Manager

NFR07_PM PM (Modelling process) - General
model description

Must-have Rule Manager

NFR04_PM PM (Modelling process) - Initial model
definition (Beginner’s mode)

Should-have Rule Manager

NFR05_PM PM (Modelling process) - Iterations Should-have Rule Manager

http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-analysis-qualitative-representation-of-the-simulation-results
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-analysis-qualitative-representation-of-the-simulation-results
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-analysis-qualitative-representation-of-the-simulation-results
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-analysis-visualisations-of-non-numerical-outcomes-events
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-analysis-visualisations-of-non-numerical-outcomes-events
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-analysis-2013-experiment-and-rule-development-browser
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-analysis-2013-experiment-and-rule-development-browser
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-analysis-2013-within-timestep-dependency-graph-visualisation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-analysis-2013-within-timestep-dependency-graph-visualisation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-experimentation-automated-experimentation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-experimentation-automated-experimentation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-experimentation-change-simulation-parameters
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-experimentation-change-simulation-parameters
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-experimentation-user-engagement-in-simulation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-experimentation-user-engagement-in-simulation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-experimentation-user-interaction
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-experimentation-user-interaction
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-experimentation-gaming-gaming
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-experimentation-gaming-gaming
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-gaming-feedback-on-simulation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-gaming-2013-role-playing-games-single-user
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-gaming-2013-role-playing-games-single-user
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-gaming-2013-user-interface-for-human-player
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-gaming-2013-user-interface-for-human-player
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-agent-type-creation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-agent-type-creation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-agents-at-different-aggregation-levels
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-agents-at-different-aggregation-levels
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-end-states
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-environment-definition-general
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-environment-definition-general
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-exogenous-factors
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-exogenous-factors
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-general-model-description
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-general-model-description
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-initial-model-definition-beginner2019s-mode
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-initial-model-definition-beginner2019s-mode
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-iterations-expert2019s-mode

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

(Expert’s mode)

NFR06_PM PM (Modelling process) - Model
description

Must-have Rule Manager

FR13_PM PM (Simulation setup) - Initial state
definition

Must-have Simulation Manager

FR12_PM PM (Simulation setup) - Setup initial
agent facts

Must-have Simulation Manager

FR11_PM PM (Simulation setup) - Setup world
facts

Must-have Simulation Manager

FR17_PM PM (Simulation termination) -
Adjustable parameters

Must-have Simulation Manager

FR14_PM PM (Simulation termination) - End
state

Must-have Simulation Manager

FR15_PM PM (Simulation termination) - Irregular
termination events

Must-have Simulation Manager

FR16_PM PM (Simulation termination) - Regular
termination events

Must-have Simulation Manager

FR21_PM PM (Simulation termination) -
Simulation abort

Must-have Simulation Manager

FR20_PM PM (Simulation termination) -
Simulation interrupt

Must-have Simulation Manager

FR19_PM PM (Simulation termination) -
Simulation start

Must-have Simulation Manager

FR18_PM PM (Simulation termination) - State
validation

Must-have Simulation Manager

NFR08_PM PM (Simulation) - Event handling Must-have Simulation Manager

NFR09_PM PM (Simulation) - Exception handling Must-have Simulation Manager

NFR12_PM PM (Simulation) - Parameter locking Must-have Simulation Manager

NFR11_PM PM (Simulation) - Parameter
presentation

Must-have Simulation Manager

NFR14_PM PM (Simulation) - Simulation execution Must-have Simulation Manager

NFR10_PM PM (Simulation) - Simulation
visualization

Must-have Simulation Manager

NFR13_PM PM (Simulation) - State handling for
inspection

Must-have Simulation Manager

FR06_PM PM (Transformation process) -
Assumption definition

Must-have Concept Manager, Link
Manager, Rule Manager

NFR01_PM PM (Transformation process) - Data
representation

Must-have Concept Manager, Link
Manager

FR01_PM PM (Transformation process) - Define
initial policy modelling aspects

Must-have Concept Manager, Link
Manager, Rule Manager

http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-iterations-expert2019s-mode
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-model-description
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-modelling-process-model-description
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-setup-initial-state-definition
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-setup-initial-state-definition
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-setup-setup-initial-agent-facts
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-setup-setup-initial-agent-facts
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-setup-setup-world-facts
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-setup-setup-world-facts
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-adjustable-parameters
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-adjustable-parameters
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-end-state
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-end-state
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-irregular-termination-events
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-irregular-termination-events
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-regular-termination-events
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-regular-termination-events
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-simulation-abort
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-simulation-abort
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-simulation-interrupt
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-simulation-interrupt
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-simulation-start
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-simulation-start
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-state-validation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-termination-state-validation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-event-handling
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-exception-handling
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-parameter-locking
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-parameter-presentation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-parameter-presentation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-simulation-execution
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-simulation-visualization
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-simulation-visualization
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-state-handling-for-inspection
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-simulation-state-handling-for-inspection
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-assumption-definition
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-assumption-definition
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-data-representation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-data-representation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-define-initial-policy-modelling-aspects
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-define-initial-policy-modelling-aspects

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

FR03_PM PM (Transformation process) -
Environment generation

Must-have Concept Manager, Link
Manager, Rule Manager

FR04_PM PM (Transformation process) - Goal
definition

Must-have Concept Manager, Link
Manager, Rule Manager

NFR02_PM PM (Transformation process) -
Language transition

Should-have Annotation Manager, Rule
Manager

FR05_PM PM (Transformation process) - Rule
generation

Must-have Concept Manager, Link
Manager, Rule Manager

FR02_PM PM (Transformation process) -
Stakeholder extraction

Must-have Concept Manager, Link
Manager, Rule Manager

T-22 Preview simulation mode – focusing on
a part of the used model

Must-have Simulation Manager

T-20 Preview simulation mode – level of
details and/or time scale

Must-have Simulation Manager

T-21 Preview simulation mode – searching
for a specified event

Should-have Simulation Manager

T-19 Previewing of a simulation (means:
state of running simulation can be
observed)

Must-have Simulation Manager

I-NF-6 Privacy Must-have User Manager

I-24 Publishing of simulation results by the
publishing tool (content management
tool)

Must-have Document Manager

I-F-I2 Removing profile Must-have User Manager

I-NF-3 Response Time Must-have

T-30 RSS Must-have Notification Manager

T-28 Shared calendar with events related to
the current processes

Should-have Calendar Manager,
Notification Manager

I-34 Simulation back-end integrated with
the ICT toolbox

Must-have Simulation Manager

I-27 Simulation preview tool available from
different physical locations – remote
access

Must-have Simulation Manager

T-36 Simulation tool – performance in
simulation cycles

Must-have

T-35 Simulation tool – the number of agents Must-have

I-3 Starting the scenario generation
process - initial scenario

Must-have Process Manager

I-12 Support for direct export/import of
information between scenario
generation process and policy
modelling

Should-have Concept Manager, Link
Manager, Process Manager,
Rule Manager

http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-environment-generation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-environment-generation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-goal-definition
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-goal-definition
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-language-transition
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-language-transition
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-rule-generation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-rule-generation
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-stakeholder-extraction
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/pm-transformation-process-stakeholder-extraction
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/preview-simulation-mode-2013-focusing-on-a-part-of-the-used-model
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/preview-simulation-mode-2013-focusing-on-a-part-of-the-used-model
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/preview-simulation-mode-2013-level-of-details-and-or-time-scale
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/preview-simulation-mode-2013-level-of-details-and-or-time-scale
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/preview-simulation-mode-2013-searching-for-a-specified-event
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/preview-simulation-mode-2013-searching-for-a-specified-event
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/previewing-of-a-simulation-means-state-of-running-simulation-can-be-observed
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/previewing-of-a-simulation-means-state-of-running-simulation-can-be-observed
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/previewing-of-a-simulation-means-state-of-running-simulation-can-be-observed
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/privacy
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/publishing-of-simulation-results-by-the-publishing-tool-content-management-tool
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/publishing-of-simulation-results-by-the-publishing-tool-content-management-tool
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/publishing-of-simulation-results-by-the-publishing-tool-content-management-tool
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/removing-profile
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/response-time
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/rss
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/shared-calendar-with-events-related-to-the-current-processes
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/shared-calendar-with-events-related-to-the-current-processes
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/simulation-back-end-integrated-with-the-ict-toolbox
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/simulation-back-end-integrated-with-the-ict-toolbox
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/simulation-preview-tool-available-from-different-physical-locations-2013-remote-access
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/simulation-preview-tool-available-from-different-physical-locations-2013-remote-access
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/simulation-preview-tool-available-from-different-physical-locations-2013-remote-access
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/simulation-tool-2013-performance-in-simulation-cycles
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/simulation-tool-2013-performance-in-simulation-cycles
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/simulation-tool-2013-the-number-of-agents
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/starting-the-scenario-generation-process-initial-scenario
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/starting-the-scenario-generation-process-initial-scenario
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/support-for-direct-export-import-of-information-between-scenario-generation-process-and-policy-modelling
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/support-for-direct-export-import-of-information-between-scenario-generation-process-and-policy-modelling
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/support-for-direct-export-import-of-information-between-scenario-generation-process-and-policy-modelling
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/support-for-direct-export-import-of-information-between-scenario-generation-process-and-policy-modelling

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

I-15 Support for the policy modelling tool
to create a new scenario generation
iteration

Must-have Process Manager

T-42 Tags Should-have Calendar Manager,
Document Manager,
Discussion Forums Manager,
Polling and Rating Manager

T-43 Tags - automatic support Nice-to-have

T-6 Teleconferencing tool Nice-to-have

T-38 Transcription tool Should-have

I-2 Transformation table - connection of
context-specific information within the
Scenario Generation and Policy
Modelling process in ICT toolbox

Must-have Annotation Manager,
Collaboration Space
Manager, Concept Manager,
Link Manager, Process
Manager

I-40 Transition table browser Must-have Concept Manager, Link
Manager, Rule Manager

I-30 Translation of agent rules from a tool
neutral syntax into simulation back-
end language

Must-have Rule Manager

I-NF-1 Usability Must-have

I-F-I5 User profile Must-have Collaboration Space
Manager, Notification
Manager, User Manager

I-F-I4 User registration Must-have User Manager

I-26 Version control of process models
and/or agent models

Must-have Version Manager

I-32 Workflow support Must-have Collaboration Space
Manager, Notification
Manager, Process Manager

 New requirements

SOTA-2 Content/WYSIWYG Should-have Document Manager

UC-10 Development of social network Should-have Link Manager, Rule Manager

UC-7 Expertise-based relations Should-have Annotation Manager

SOTA-3 File types supported Should-have Document Manager

UC-6 Generation of relations Should-have Annotation Manager

UC-4 Initiate project Must-have Collaboration Space
Manager, Process Manager

SOTA-6 Information structuring Should-have Annotation Manager, Rule
Manager

UC-2 Invitation – send and receive Should-have Notification Manager,
Process Manager, User

http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/support-for-the-policy-modelling-tool-to-create-a-new-scenario-generation-iteration
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/support-for-the-policy-modelling-tool-to-create-a-new-scenario-generation-iteration
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/support-for-the-policy-modelling-tool-to-create-a-new-scenario-generation-iteration
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/tags
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/tags-automatic-support
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/teleconferencing-tool
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/transcription-tool
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/transformation-table-connection-of-context-specific-information-within-the-scenario-generation-and-policy-modelling-process-in-ict-toolbox
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/transformation-table-connection-of-context-specific-information-within-the-scenario-generation-and-policy-modelling-process-in-ict-toolbox
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/transformation-table-connection-of-context-specific-information-within-the-scenario-generation-and-policy-modelling-process-in-ict-toolbox
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/transformation-table-connection-of-context-specific-information-within-the-scenario-generation-and-policy-modelling-process-in-ict-toolbox
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/transition-table-browser
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/translation-of-agent-rules-from-a-tool-neutral-syntax-into-simulation-back-end-language
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/translation-of-agent-rules-from-a-tool-neutral-syntax-into-simulation-back-end-language
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/translation-of-agent-rules-from-a-tool-neutral-syntax-into-simulation-back-end-language
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/usability
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/user-profile
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/user-registration
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/version-control-of-process-models-and-or-agent-models
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/version-control-of-process-models-and-or-agent-models
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/workflow-support

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Manager

SOTA-7 Memos Should-have Annotation Manager,
Document Manager

UC-9 Network visualisation Should-have Rule Manager

SOTA-8 Non-RETE rule engine Must-have Simulation Manager

UC-8 Quantitative data analysis Should-have Annotation Manager

UC-1 Rights management Must-have Collaboration Space
Manager, Process Manager,
User Manager

UC-3 Send request for invitation Nice-to-have Process Manager, User
Manager

SOTA-4 Several document editors Should-have Document Manager

SOTA-5 Real-time co-editing Nice-to-have Document Manager

UC-5 Update description of the project Must-have Collaboration Space
Manager, Document
Manager

SOTA-1 Workflow engine Should-have Document Manager, Process
Manager

Table 65 Requirement coverage

A few requirements are not covered by the proposed architecture (marked in yellow and reddish

colours). The yellow colour represents a few mainly non-functional requirements, some of which have

been discussed within architectural perspectives but are not covered by particular components (e.g. I-

NF-2 Accessibility, I-NF-10 Integrity, I-NFT-8 Look and feel, I-NF-7 Operational, I-35 Multilingual

interface, I-NF-1 Usability). These requirements represent features which must be taken into

consideration during later implementation phases of the project and therefore it is not possible to judge

on their satisfaction now.

Similarly, there is a set of yellow requirements on performance characteristics of the prospective

OCOPOMO ICT toolbox (e.g. T-36 Simulation tool - performance in simulation cycles, I-NF-3

Response time, T-35 Simulation tool – the number of agents). These characteristics have quantitative

nature and they can be evaluated only after the implementation will be ready.

Only three requirements (marked in reddish colour) are not covered by the proposed architecture – T-6

Teleconferencing tool, T-38 Transcription tool, and T-43 Tags - automatic support. Two of them have

‗Nice-to-have‘ priority and one has ‗Should-have‘ priority. This assignment means that the actual

decision whether to accept or reject such requirements should be based on available resources

[Bicking et al., 2010]. We have decided not to consider these requirements yet and to postpone the

decision on possible incorporation into the ICT toolbox to later phases of the project. The reason is

that, on one hand, they represent functionality the absence of which has no implication on the ability

and functioning of the toolbox to support users in their tasks (currently they do not play any role in the

processes defined by the OCOPOMO approach) and, on the other hand, their incorporation would be

quite costly in terms of necessary resources.

More detailed validation of the proposed architecture and its breakdown into managers is expected to

be performed within workpackage WP3, especially considering (in detail) functionality provided by

the selected software tools to be reused.

http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/teleconferencing-tool
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/transcription-tool
http://fgwimz3.uni-koblenz.de:8081/ocopomo/workspace/wp-02-architectural-design-of-it-solution-1/requirements/tags-automatic-support

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

In order to illustrate, how the proposed architecture can be used to support user activities, we present

an example of a user scenario to illustrate the topic. This is a simple example of a scenario flow which

includes these operations of one user (Facilitator)
132

:

 Facilitator opens the document for analysis (he/she already knows which document).

 Then he/she highlights some text in order to create an issue (a concept object).

 Then he/she inserts a relation to another issue (concept) and links them together.

The model of the use case scenario (as a sequence diagram) is presented in Figure 60. It involves 7

managers. Communication between these managers (as well as a user - Facilitator) consists of the

following steps:

1. Facilitator decides to analyse the scenario document using Annotation Manager (starts with

opening of this document). A call to the manager is performed in order to achieve this goal

using his/her user interface.

2. Annotation Manager calls Process Manager in order to obtain context information (details

regarding the current process - project).

3. Context information is returned to Annotation Manager and is available from this moment

within the current session of user.

4. Annotation Manager calls User Manager for access rights of the current user (if Facilitator is

able to perform such analysis).

5. Access rights information about the current operation (opening the scenario) is returned to

Annotation Manager.

6. Document Manager is called for getting the document (for analysis).

7. Document Manager wants to retrieve anything necessary (document, metadata, etc.) from

Content Manager.

8. All data related to document (for analysis) is returned to Document Manager from Content

Manager.

9. Document with all its details (e.g. metadata) is returned to Annotation Manager and is ready for

the analysis.

10. Annotation Manager provides all its features with opened document to Facilitator.

11. Facilitator wants to create a concept object (annotation based on the highlighted text and its

metadata). He/she uses interface on the screen for highlighting and inserting metadata of the

new concept and clicks for an action. After this moment Annotation Manager has necessary

data for creation of the new concept object element.

12. Annotation Manager calls User Manager for retrieving access rights regarding the current

operation (creation of concept object).

13. Access rights are retrieved from the User Manager.

14. Annotation Manager calls Concept Manager and sends all necessary data for creation of a

concept object.

15. Concept Manager uses Content Manager for storage of the new concept object using its API.

132

 We assume that the user is already authenticated and he/she is currently working with the annotation tool.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

16. Concept Manager retrieves identification of new the concept object, which was stored in

respective content repository.

17. Annotation Manager retrieves identification of the new concept which was created according

to its needs.

18. Facilitator is able to see the new concept in his/her user interface.

19. Facilitator now wants to create a link between the new concept and some other issue (also

concept object). He/she selects the second concept object, new one and adds metadata related

to the new link, which will be created between them. Then he/she clicks for action and after

this moment Annotation Manager has all necessary data for the creation of the link.

20. Annotation Manager calls User Manager for access rights regarding the current operation

(creation of link object).

21. Access rights are retrieved from the User Manager.

22. Annotation Manager needs to retrieve the second concept object and its details, therefore

Concept Manager is called here.

23. Concept Manager uses Content Manager for retrieving the concept object using its API.

24. Concept Manager retrieves the concept object from the content repository.

25. Annotation Manager retrieves the concept object from Concept Manager.

26. Annotation Manager now has both concept objects (the new object created before and

retrieved second concept) and all necessary data for the new link. Now it calls API of Link

Manager in order to create the new link object.

27. Link Manager uses Content Manager to store the new link object using its API.

28. Link Manager retrieves identification of the new link which was stored in the content

repository.

29. Annotation Manager retrieves the identification of the new concept which was created

according to its needs.

30. Facilitator is able to see the new link in his/her user interface.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 60 Sequence diagram for a simple use case scenario 1.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

9. CONCLUSION

In this document we have outlined an overall architecture and defined all necessary components that

are considered to be essential for the prospective OCOPOMO ICT toolkit. All the activities related to

the architecture design and all decisions taken within these activities can be loosely divided into the

following three areas:

 Initial understanding of the prospective system

 State of the art analysis

 Architecture and component design

Initial understanding of the prospective system corresponds to the current
133

 level of understanding of

the processes hidden behind collaborative preparation of evidence-based scenarios, the transformation

of evidence-based scenarios into formal simulation models, and utilising feedback from simulation-

based scenarios back to evidence-based scenarios. This section is based on information available from

the previous workpackage WP1 [Bicking et al., 2010] and the ongoing parallel workpackage WP5

[Moss et al., 2010]. This area comprises the definition of system boundaries and user-oriented

perspective of the system and supported processes. The main objective was to complete the vision and

understanding of the platform.

State of the art analysis was the next area of interest. The main objective is to provide potential

solutions for particular issues in platform architecture with an emphasis on current needs. Therefore,

we have investigated current technologies and software tools in areas identified as relevant based on

initial understanding of the prospective system (i.e. e-participation, scenario generation and analysis,

formal modelling, integration, relevant standards). For all of them we have identified several

alternatives for software solutions and criteria for their comparison and evaluation. According to all

current project needs, user requirements, implementation considerations and their combinations, three

software tools have been selected to be reused.

To describe OCOPOMO architecture we have adopted a well-known methodology standardized under

IEEE 1471. All architectural aspects were identified through architectural views and perspectives.

Two basic views were used - Functional view (structure of the platform and basic description of

components) and Information view (data model). Also three perspectives were considered in order to

refine the architecture – Interaction perspective (issues related to GUI), Usability perspective

(enabling users to utilise the platform effectively), and Internationalisation perspective (support for

different languages). According to current needs and decisions the architecture was developed as a set

of managers. Next, all the components (managers) were described in more details according to their

functional behaviour, supported use cases (manager-specific use cases) and APIs available to other

components.

State of the art evaluation has resulted in the selection of these software tools:

 Alfresco CMS/Share - basic CMS-based tool with personalised user interface for collaboration

and document management features (available by Alfresco Share application), important also

as an integration platform for content repository (CMIS standard supported) and presentation

integration (portal solution based on Share), all within web/application server with a database

(current preferences: Tomcat, MySQL)

133

 This understanding can evolve in next project phases and therefore the presented design (e.g. use cases,

mock-ups, etc.) cannot be considered frozen and unchangeable but rather flexible - able to evolve and

accommodate future required modifications.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Simulation software – an important combination of agent-based simulation software (Repast

will be reused as a general ABM platform) and rule engine (DRAMS, currently under

development) for creation and running of simulation models.

Based on the decision on selection of existing tools and their reuse, some of the managers should be

implemented from the scratch while others will be re-used or adapted for usage in the OCOPOMO

platform from existing tools.

Figure 61 represents an updated version of the overall architecture – as a combination of the proposed

architecture and the selection of tools to be reused within the ICT toolkit. The architecture components

(managers) are shown in different colours according to the way they are expected to be implemented.

SCENARIO SUBSYSTEM

Document

Manager

COMMUNICATION SUBSYSTEM

Discussion

Forums

Manager

Chat

Manager

Annotation

Manager

Polling

and Rating

Manager

Calendar

Manager

Rule

Manager

Simulation

Manager

CORE

Search

Manager

Collaboration

Space

Manager

Concept

Manager

Notification

Manager

Link

Manager

User

Manager

DATA

Content Manager Version Manager

SIMULATION SUBSYSTEM

Process

Manager

Figure 61 Platform components - implementation needs for managers

Managers depicted in white colour will be implemented from scratch as platform specific components.

Here we have Concept, Link, Polling and Rating, Rule and Annotation managers. These managers

(except Polling and Rating manager) are very specific to identified process and its needs (scenario

analysis, creation and maintenance of concepts and linking objects, creation and maintenance of rules,

agents, models, etc.) and therefore we were not able to find any tool to provide the required

functionality – the only possibility is to implement their functionality. Although Polling and rating

manager is expected to provide rather standard functionality, since it is missing in the Alfresco CMS,

it must be added (probably by adapting an existing code).

 There is one manager with yellow background – Simulation manager. It combines Repast (as reused

software for simulations) and DRAMS (rule engine which works upon Repast‘s simulation

infrastructure to support declarative agent modelling). As it was already written, DRAMS is under

active development of project partners responsible for formal modelling. Therefore, this manager is

partially being developed from the scratch and partially reusing existing software – the DRAMS part

must be developed further to obtain all the required functionality of the manager.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Managers with magenta background can be directly replaced with the functionality provided by the

selected Alfresco software (maybe they will be only customised or only small implementation will be

needed). All of them (Document, Discussion forums and Calendar managers) are implemented within

Alfresco Share application.

All the other (orange background) managers are those which are partially supported by the selected

Alfresco, but it is expected that some implementation effort will be necessary for integration of them

within OCOPOMO platform and for extension of their functionality.

All implementation work on platform components will be controlled and also done within the

workpackage WP3 and its particular tasks. Task 3.1 is expected to test the selected software tools and

their limits according to project‘s needs in detail. Especially those managers (in magenta and orange)

which are going to reuse some tool from the Alfresco CMS/Share should be analysed and any

bottlenecks for additional implementation of expected features (or their customisation) should be

identified. The identified missing functionality in managers with magenta and/or orange background

as well as functionality of managers with white background must be implemented. The main task for

this will be Task 3.2 - Implementation of platform components, which is then iterated after the first

trial by revision of implementation according to feedback from testing (Task 3.3). Integration of

platform and its finalization will be controlled by the integration workpackage WP4.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

10. REFERENCES

OCOPOMO documents

[Bicking et al., 2010] Bicking, M., Butka, P., Delrio, C., Dunilova, V., Hilovska, K., Kacprzyk, M.,

Lotzmann, U., Lucznik, K., Mach, M., Moss, S., Nowak, A., Pizzo, C., Rinaldi, V.,

Roszczynska-Kurasinska, M., Sabol, T., Scherer, S., Schmidt, A., Ventzke, S. and Wimmer,

M. A.: D1.1 Stakeholder Identification and requirements for toolbox, scenario process and

policy modelling. Deliverable 1.1, OCOPOMO, 2010.

[Moss et al., 2010] Moss, S. et al.: D5.1 Scenario, policy model and rule-based agent design.

Deliverable 5.1, OCOPOMO, 2010 (under preparation).

[Ocopomo-DoW, 2009] OCOPOMO: FP7-ICT-2009.7.3 Grant Agreement for Collaborative Project,

Annex I: ―Description of Work‖, Grant agreement number 248128. Date of approval: 2009-

12-14

Integration methods and technologies

[Cerami, 2002] Cerami, E.: Web Services Essentials. O'Reilly Media, Inc., 2002, 304p.

[Cover, 2004] Cover, R.: Java Business Integration (JBI) Specification Early Draft Review. The

XML Cover Pages 2004, http://xml.coverpages.org/JBI-EarlyReview.html [last accessed 20.7.

2010].

[Fielding, 2000] Fielding, R.: Representational state transfer (REST). Chapter 5 in Architectural

Styles and the Design of Network based Software Architectures, 2000.

[Gudgin et al., 2007] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J. and Nielsen, H.: Simple

Object Access Protocol (SOAP) 1.2, World Wide Web Consortium, 2007.

[High et al., 2005] High, R., Kinder, S. and Graham, S.: IBM‘s SOA Foundation – An Architectural

Introduction and Overview. IBM, 2005, http://download.boulder.ibm.com/ibmdl/pub/

software/dw/webservices/ws-soa-whitepaper.pdf [last accessed 20.7.2010].

[Hohpe and Woolf, 2003] Hohpe, G. and Woolf, B.: Enterprise Integration Patterns: Designing,

Building, and Deploying Messaging Solutions. Addison-Wesley Professional, Boston, USA,

2003, 736p.

[Hollingsworth, 1995] Hollingsworth, D.: Workflow management Coalition - The Workflow

Reference Model. WfMC-TC-1003, 1995.

[Juric et al., 2002] Juric, M., Nashi, N., Berry, C., Kunnumpurath, M., Carnell, J. and Romanosky, S.:

J2EE Design Patterns Applied. Wrox, UK, 2002, 450p.

[Juric et al., 2007] Juric, M., Loganathan, R., Sarang, P. and Jennings, F.: SOA Approach to

Integration. Packt Publishing, Birmingham, UK, 2007, 384p.

[Kinnumpurath, 2005] Kinnumpurath, M.: JBI – A Standard-based approach for SOA in Java.

TheServerSide, 2005, http://www.theserverside.com/tt/articles/article.tss?l=JBIforSOA [last

accessed 20.7.2010].

[La et al., 2007] La, H.Y., Bae, J.S., Chang, S.H. and Kim, S.D.: Practical Methods for Adapting

Services Using Enterprise Service Bus. In: Proceedings of the 7th International Web

Engineering Conference ICWE 2007, Springer LNCS 4607, Como, Italy, 53-58.

[McLean et al., 2002] McLean, S., Naftel, J. and Williams, K.: Microsoft .NET Remoting. Microsoft

Press, 2002.

[Ouyang, 2006] Ouyang, Ch., Dumas, M., van der Aalst, W.M.P. and Hofstede, A.H.M: From

Business Process Models to Process-oriented Software Systems: The BPMN to BPEL Way.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Technical Report, Queensland University of Technology, 2006,

http://eprints.qut.edu.au/5266/1/5266.pdf [last accessed 20.7.2010].

[Papazoglou, 2003] Papazoglou, M.: Service-oriented computing: concepts, characteristics and

directions. In: Proceedings of the Fourth International Conference on Web Information

Systems Engineering, 2003.

[Ten-Hove, 2006] Ten-Hove, R.: JBI Components: Part 1 (Theory). Sun Microsystems, Inc., 2006,

https://open-esb.dev.java.net/public/pdf/JBI-Components-Theory.pdf [last accessed

20.7.2010].

[Vinoski, 2006] Vinoski, S.: Advanced Message Queuing Protocol. IEEE Internet Computing 10,

2006, 87–89.

E-participation tools and technologies

[Albrecht et al., 2008] Albrecht, S., Kohlrausch, N., Kubicek, H., Lippa, B., Märker, O., Trénel, M., et

al.: eParticipation - Electronic Participation of Citizens and the Business Community in

eGovernment. Bremen: Study on Behalf of the Federal Ministry of the Interior (Germany),

Division IT 1, 2008.

 [Aichholzer and Allhutter, 2009] Aichholzer, G. and Allhutter, D.: Public Policies on e-participation

in Austria. In: Macintosh, A. & Tambouris, E. (Eds.): Electronic Participation: First

International Conference, ePart 2009, Linz, Austria, September 2009, Proceedings (LNCS),

Berlin, Heidelberg, 24-45.

[Bicking and Wimmer, 2009] Bicking, M. and Wimmer, M. A.: Evaluation Framework to Assess e-

participation Projects in Europe. In: Tambouris, E., Macintosh, A. (Eds.): Electronic

Participation: Proceedings of Ongoing Research, General Development Issues and Projects of

ePart 2009, Linz, Trauner Verlag, 2009, 73-82.

[Charalabidis et al., 2009] Charalabidis, Y., Koussouris, S. and Kipenis, L.: Report on the Objectives,

Structure and Status of e-participation Initiative Projects in the European Union. Whitepaper,

MOMENTUM Konsortium, 2009, http://www.ep-momentum.eu/ [last accessed 22.09.2010].

[cms, 2009] Water&stone and CMSWire: Open Source CMS Market Share. Technical report, 2009,

http://www.waterandstone.com/2009-open-source-cms-market-share-report-august-2009 [last

accessed: 22.09.2010].

[Koulolias et al., 2006] Koulolias, V., Karamagioli, E. and Xenakis, A.: The Gov2DemOSS

eParticipation Platform: A New Era Tool for eDemocracy Implementation. In P. Cunningham

and M. Cunningham (Eds.): Exploiting the Knowledge Economy: Issues, Applications, Case

Studies, Proceedings of eChallenges 2006, Amsterdam, 2006. IOS Press.

[Mintert, 2010] Mintert, S.: Marktübersicht Web-CMS Unteilbares. iX Magazin für professionelle

Informationstechnik, 2010 (8), 104–109.

[oecd, 2007] Participative Web and User-Created Content: Web 2.0, Wikis and Social Networking.

OECD, 9, 2007.

[Panopoulou et al., 2009] Panopoulou, E., Tambouris, E. and Tarabanis, K.: E-participation

initiatives: How is Europe progressing? European Journal of ePractice, 7, 2009.

[Scherer et al., 2008] Scherer, S., Schneider, C. and Wimmer, M. A.: Studying e-participation in

Government Innovation Programmes: Lessons from a Survey. In: Hampe, F., Swatman, P. M.,

Gricar, J., Pucihar, A. and Lenart, G. (Eds.): eCollaboration: Overcoming Boundaries through

Multi-Channel Interaction. 21st Bled eConference, 2008, electronic proceedings.

[Scherer et al., 2009a] Scherer, S., Holzner, M., Karamagioli, E., Lorenz, M., Schepers, J. and

Wimmer, M. A.: Integrating Semantics, Social Software and Serious Games into e-

participation: The VoiceS Project. In: Electronic Participation: Proceedings of Ongoing

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Research, General Development Issues and Projects of ePart 2009, 1st International

Conference, ePart 2009 Linz, Austria, September 1-3, 2009, Linz, Austria, Trauner, 151-158.

[Scherer et al., 2009b] Scherer, S., Karamagioli, E., Titorencu, M., Schepers, J., Wimmer, M. A. and

Koulolias, V.: Usability Engineering in e-participation. European Journal of ePractice, 7,

2009.

[Scherer et al., 2011] Scherer, S., Liotas, N., Wimmer, M. A., Tambouris, E. and Tarabanis, K.:

Interoperability Requirements, Recommendations and Standards in E-Participation. In:

Charalabidis, Y. (Ed.): Interoperability in Digital Public Services and Administration:

Bridging E-Government and E-Business, chapter 6, will be published in 2011, IGI Global.

ISBN 978-1-61520-887-6.

[Schwartz et al., 2004] Schwartz, L., Clark, S., Cossarin, M. and Rudolph, J.: Educational Wikis:

features and selection criteria, The International Review of Research in Open and Distance

Learning, 2004, http://www.irrodl.org/index.php/irrodl/article/view/163/244 [last accessed:

06.09.2010].

[Tambouris et al., 2007] Tambouris, E., Liotas, N. and Tarabanis, K.: A Framework for Assessing e-

participation Projects and Tools. In: HICSS ‘07: Proceedings of the 40th Annual Hawaii

International Conference on System Sciences 2007, pp. 90, Washington, DC. IEEE Computer

Society.

[Tambouris et al., 2008] Tambouris, E., Kalampokis, E. and Tarabanis, K.: A survey of e-

participation research projects in the European Union. International Journal of Electronic

Business (IJEB), 6(6), 2008.

[Thorleifsdottir and Wimmer, 2006] Thorleifsdottir, A. and Wimmer, M. A.(Eds.): DEMO-net

Deliverable 5.1: Report on current ICTs to enable Participation. DEMO-net Deliverable, 2006.

[Ventzke et al., 2010] Ventzke, S., Weiß, S. and Wimmer, M. A.: Stakeholder-Beteiligung in der

Entwicklung eines Virtual Company Dossiers mithilfe von Web 2.0. In: Wimmer, M. A.,

Brinkhoff, U., Kaiser, S., Lück-Schneider, D., Schweighofer, E. and Wiebe, A. (Eds.):

Vernetzte IT für einen effektiven Staat: Gemeinsame Fachtagung Verwaltungsinformatik

(FTVI) und Fachtagung Rechtsinformatik (FTRI) 2010, number 162 in Lecture Notes in

Informatics, 109–122.

[Westholm and Wimmer, 2007] Westholm, H. and Wimmer, M. A. (Eds.) DEMO-net Deliverable

6.2: Interdisciplinary framework to address the socio technical and political challenges of e-

participation. DEMO-net Deliverable, 2007.

[Wimmer, 2007] Wimmer, M. A.: Ontology for an e-participation virtual resource centre. In:

Janowski, T. and Pardo, T. A. (Eds.): ICEGOV ‘07: Proceedings of the 1st international

conference on Theory and practice of electronic governance, 2007, New York, 89-98.

Scenario generation and analysis tools and technologies

[Alexa and Zuell, 1999] Alexa, M. and Zuell, C.: A review of software for text analysis. ZUMA

Nachrichten Spezial 5. ZUMA: Mannheim, 1999.

[Barry, 1998] Barry, C.A.: Choosing Qualitative Data Analysis Software: Atlas/ti and Nudist

Compared. In: Social Research On-line, Vol. 3, 1998, Issue: 3, 1-17.

[Bertil and Magnusson, 2002] Bertil, R. and Magnusson, C.: Developing the art of argumentation: A

software approach. In: Proceedings of the Fifth Conference of the International Society for the

Study of Argumentation, 2002.

[Bicking and Wimmer, 2010] Bicking, M. and Wimmer, M.A.: Need for Computer-Assisted

Qualitative Data Analysis in the Strategic Planning of E-Government Research. In: Chun,

Soon Ae; Sandoval, Rodrigo; Philpot, Andrew: Public Administration On-line: Challenges

and Opportunities. omni press, 2010.

http://www.irrodl.org/index.php/irrodl/article/view/163/244

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

[Bradfield et al., 2005] Bradfield, R., Wright, G., Burt, G., Cairns, G. and K. van der Heijden: The

origins and evolution of scenario techniques in long range business planning. In: Futures, Vol.

37, 2005, Issue 8, 795-812.

[Brandao, 2006] Brandão Moniz, A.: Scenario-Building Methods as a Tool for Policy Analysis. In

Innovative Comparative Methods for Policy Analysis, Beyond the Quantitative-Qualitative

Divide, R. Rihoux, H. Grimm, Eds. Springer US, 2006, 185-209

[Creswell and Maietta, 2002] Creswell, J. and Maietta, R.: Qualitative Data Analysis Software. In:

Miller, D.C., Salkind, N. J. (Eds) Handbook of Research Design and Social Measurement, 6th

Edition, Thousand Oaks, CA: SAGE, 2002.

[Dilek, 2009] Dilek, C.: The Scenario Analysis Tool Suite: A User's Guide, 2009.

[Gausemeier et al., 1995] Gausemeier, J., Fink, A. and Schlake, O., Szenario-Management: Planen

und Führen mit Szenarien. München, Hanser, 1995

[Geschka and Hammer, 1997] Geschka, H. And Hammer, R.: Die Szenario-Technik in der

strategischen Unternehmensplanung. In Hahn, D.; Taylor, B. (eds.): Strategische

Unternehmensplanung. 7th Edition, Heidelberg 1997, p. 464-489

[Gibson, 1996] Gibson, R.: Rethinking the futures. Nicholas Brealey Publishing, London, UK, 1996.

[Glenn et al., 1999] Glenn, J. (ed.), Futures research methodology. Washington: American Council for

the United Nations University, CD Rom: version 1.0, 1999

[Jansen et al., 2006] Janssen, M. et al.: Deliverable D 2.1: Scenarios report (including regional

workshops report), 2006, http://www.egovrtd2020.org/EGOVRTD2020/navigation/

work_packages/wp2_scenario_building/deliverable_scenario_building

[Johnson et al., 2002] Johnson, G., Scholes, K. and Whittingon, R.: Exploring Corporate Strategy.

Prentice Hall, 2002

[Kahn and Weiner, 1967] Kahn, H., Weiner, A.J.: The Year 2000: A Framework for Speculations on

the Next Thirty-Three Years. The MacMillan Company, 1967

[Kirschner et al., 2003] Kirschner, P.A., Buckingham Shum, S.J. and Carr, C.S.: Visualizing

Argumentation: Software Tools for Collaborative and Educational Sense-Making, Springer-

Verlag, London, UK., 2003

[Kolabora, 2007] Kolabora: ―Collaborative Writing Tools And Technology: A Mini-Guide‖.

http://www.kolabora.com/news/2007/03/01/collaborative_writing_tools_and_technology.htm

[last access on 10.09.2010]

[Koenig, 2010] König, T.: CAQDAS Comparison. 2010,

http://www.restore.ac.uk/lboro/research/software/ caqdas_comparison.php#fl1995 [last access

on 13.09.2010]

[Kuckartz, 2007] Kuckartz, U.: Einführung in die computergestützte Analyse qualitativer Daten. Vs

Verlag für Sozialwissenschaften, 2nd edition., revised and advanced edition. (16 January

2007), ISBN-13: 978-3531342474

[May, 1996] May, G.: The future is ours. London: Adamantine Press, 1996

[Mayring, 2007] Mayring, P.: Qualitative Inhaltsanalyse – Grundlagen und Techniken. 9. Edition.

Beltz Verlag, 2007

[Nam, 2004] Nam, M.: Systematic scenario walkthroughs with ARTSCENE. In Scenarios, stories, use

cases: through the systems development life-cycle, I. Alexander , M. Nam Eds. John Wiley,

New York, 2004, 161–178.

[OECD, 2008] OECD Environmental Outlook to 2030, March 2008, ISBN: 9789264040489.

http://www.oecd.org/document/20/0,3343,en_2649_34305_39676628_1_1_1_37465,00.html

[Prakken and Vreeswijk, 2002] Prakken, H., Vreeswijk, G.A.W.: Encoding schemes for a discourse

support system for legal argument. In: Workshop Notes of the ECAI-02 Workshop on

Computational Models of Natural Argument, 2002, 31–39.

[Reed and Rowe, 2004] Reed, C.A. and Rowe, G.A.W.: Araucaria: Software for argument analysis,

diagramming and representation. In: International Journal on Artificial Intelligence Tools,

2004, 14(3-4), 961–980

http://www.egovrtd2020.org/EGOVRTD2020/navigation/
http://www.kolabora.com/news/2007/03/01/collaborative_writing_tools_and_technology.htm
http://www.restore.ac.uk/lboro/research/software/%20caqdas_comparison.php#fl1995

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

[Schank and Ranney, 1995] Schank, P. and Ranney, M.: Improved reasoning with Convince Me. In:

CHI ‘95: Conference Companion on Human Factors in computing Systems, 276–277, New

York, NY. ACM Press, 1995

[Selvin et al., 2001] Selvin, A., Buckingham Shum, S., Sierhuis, M., Conklin, J., Zimmermann, B.,

Palus, C., Drath, W., Horth, D., Domingue, J., Motta, E., Li, G.: Compendium: Making

meetings into knowledge events. In: Proceedings Knowledge Technologies 2001.

[Sharpe and Van der Heijden, 2007] Sharpe, B., Van der Heijden, K.: Scenarios for Success – Turning

Insights into Action. John Wiley &Sons, Ltd., England, 2007.

[Straeter, 1988] Sträter, D.: Szenarien als Instrument der Vorausschau in der räumlichen Planung. In

Akademie für Raumforschung und Landesplanung (Ed.): Regionalprognosen. Methoden und

ihre Anwendung, 1988, 417-440, Hannover (Veröffentlichungen der Akademie für

Raumforschung und Landesplanung: Forschungs- und Sitzungsberichte, 175).

[Suthers et al., 1995] Suthers, D., Weiner, A., Connelly, J., Paolucci, M.: Belvedere: Engaging

students in critical discussion of science and public policy issues. In: AI-Ed 95, the 7th World

Conference on Artificial Intelligence in Education, 1995, 266–273

[Tietje, 2008] Tietje, O.: SCrategy Projektentwicklung, 2008,

http://www.scrategy.com/Software/index.htm

[Surrey, 2010] University of Surrey: QUIC Briefing and Working Papers, 2010,

http://caqdas.soc.surrey.ac.uk/Resources/QUICworkingpapers.html [last access on

13.09.2010]

[Van den Herik and de Vreede, 2000] van den Herik, C.W.; de Vreede, G.J.: Experiences with

Facilitating Policy Meeting with Group Support Systems. In International Journal of

Technology and Management, 19, 2000, 2/3/4, 246-268.

[Van der Duin et al., 2001] Van der Duin, P.A., Drop, R. and Kloosterhof, A.: The world of future

studies according to KPN Research. Leidschendam: KPN Research, 2001.

[Van Gelder, 2002] van Gelder, T.J.: Argument mapping with Reason!Able. The American

Philosophical Association Newsletter on Philosophy and Computers, 2002, 85–90

[Van Notten et al., 2003] van Notten, P.W.F., Rotmans, J., van Asselt, M.B.A. and Rothmann, D.: An

updated scenario typology. In: Futures, 35, 2003, 423-443

[Verheij, 2003] Verheij, B.: Artificial argument assistants for defeasible argumentation. Artificial

Intelligence, 2003, 150(1-2), 291–324

[Von Reibnitz, 1987] Von Reibnitz, U.: Szenarien - Optionen für die Zukunft. Hamburg, McGraw-

Hill, 1987

[Weitzman and Miles, 1995] Weitzman, E., Miles M.B.: Computer Programs for Qualitative Analysis.

A Software Sourcebook. Sage. London, 1995.

Formal modelling tools and technologies

[Berryman, 2008] Berryman, M.: Review of Software Platforms for Agent Based Models. Technical

report DSTO-GD-0532, Department of Defence, Defence Science and Technology

Organisation, Land Operations Division, Edinburgh, Australia, April 2008.

[Brazier et al., 1997] Brazier, F.M.T., Dunin-Keplicz, B.M., Jennings, N.R. and Treur, J.: DESIRE:

Modelling Multi-Agent Systems in Compositional Formal Framework. Int. Journal of

Cooperative Information Systems, 1997, vol 6, 67-94.

[Caves, 2006] CAVES Periodic Activity Report, Project Month 18; FP7 Project 012816: CAVES –

Complexity, Agents, Volatility, Evidence and Scale, 2006, http://cfpm.org/caves

[Epstein and Axtell, 1996] Epstein, J. and Axtell, R.: Growing Artificial Societies: Social Science

from the Bottom-Up. MIT Press, 1996.

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

[Figueira and Ramalho, 2000] da Figueira Filho, S.C. and Ramalho, L. G.: JEOPS — The Java

Embedded Object Production System. In: Advances in Artificial Intelligence, Springer, 2000,

53-62 (Lecture Notes in Computer Science; 1952)

[Forgy, 1982] Forgy, C.: Rete: a Fast Algorithm for the Many Pattern/Many Objects Pattern Match

Problem. In Artificial Intelligence, v. 19, 1982, 17-37

[Gilbert and Bankes, 2002] Gilbert, N. and Bankes, S.: Platforms and methods for agent-based

modelling. PNAS 99 (supp. 3):7197-7198, 2002.

[Gilbert and Troitzsch, 2005] Gilbert, N. and Troitzsch, K.G.: Simulation for the Social Scientist. 2
nd

edition. Open University Press/Mc Graw Hill, 2005.

[jsr-94, 2004] JSR-94: Java Specification Request #94: Java Rule Engine API. Final release, August

2004. http://www.jcp.org/en/jsr/detail?id=94

[Luke et al., 2005] Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K. and Balan, G.: Mason: A

multiagent simulation environment. Simulation 2005, 81(7), 517-527.

http://dx.doi.org/10.1177/0037549705058073.

[Minar et al., 1996] Minar, N., Burkhart, R., Langton, C. and Askenazi, M.: The Swarm simulation

system: a toolkit for building multi-agent simulations. Technical report, 1996.

[Moss and Edmonds, 2005] Moss, S. and Edmonds, E.: Sociology and simulation: statistical and

qualitative cross-validation. American Journal of Sociology, 2005, 11(4):1095-1131.

[Moss et al.,1998] Moss, S., Gaylard, H, Wallis, S. and Edmonds, B.: SDML: A Multi-agent Language

for Organizational Modelling. Computational and Mathematical Organization Theory, 1998, 4

(1), 43-69.

[Najlis et al.,2001] Najlis, R., Janssen, M. A. and Parker, D. C.: Software tools and communication

issues. Proc. Of the Agent-Based Models of Land-Use and Land-Cover Change Workshop,

2001, 17-30.

[Nikolai and Madey, 2009] Nikolai, C. and Madey, G.: Tools of the Trade: A Survey of Various Agent

Based Modelling Platforms. Journal of Artificial Societies and Social Simulation, 2009, 12(2),

http://jasss.soc.surrey.ac.uk/12/2/2.html

[North et al., 2006] North, M. J., Collier, N. T. and Vos, J. R.: Experiences creating three

implementations of the repast agent modelling toolkit. ACM Trans. Model. Comput. Simul.,

2006, 16(1), 1-25.

[Parker, 2001] Parker M.: What is Ascape and Why Should You Care? Journal of Artificial Societies

and Social Simulation, 2001, 4 (1) 5, http://jasss.soc.surrey.ac.uk/4/1/5.html

[Railsback et al., 2006] Railsback, S.F., Lytinen, S.L., and Jackson, S.K.: Agent-based simulation

platforms: Review and development recommendations. Simulation, 2006, 82(9):609-623,

http://www.humboldt.edu/ecomodel/documents/ABMPlatformReview.pdf

[Tobias and Hofmann, 2004] Tobias, R . and Hofmann, C.: Evaluation of free Java-libraries for social-

scientific agent based simulation. Journal of Artificial Societies and Social Simulation, 2004,

7 (1) 6, http://jasss.soc.surrey.ac.uk/7/1/6.html

[Wilensky, 1999] Wilensky, U.: NetLogo. Center for Connected Learning and Computer-Based

Modeling, Northwestern University, Evanston, IL, 1999, http://ccl.northwestern.edu/netlogo/

Architecture

[Booch et al., 2007] Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim

Conallen, Kelli A. Houston: Object-Oriented Analysis and Design with Applications, Third

Edition. Addison Wesley Professional, 2007.

[Coad and Yourdon, 1991] Peter Coad, Edward Yourdon: Object-oriented design. Yourdon Press,

Upper Saddle River, NJ, USA, 1991, ISBN 0-13-630070-7.

http://www.humboldt.edu/ecomodel/documents/ABMPlatformReview.pdf

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

[Esteves, 2007] Esteves, J.: A Semiotic Analysis of Spanish Local e-Government Websites. In:

Proceedings of the 7th European Conference on E-Government 200, ECEG, Academic

Conferences Ltd., 2007.

[Firesmith, 2002] Firesmith, D.G.: The OPEN process framework, Pearson Educatrion Limitd, 2002,

ISBN 0-201-67510-2.

[IEEE, 2000] IEEE Computer Society. Recommended Practice for Architectural Description of

Software-Intensive Systems. IEEE Std-1471-2000, October 9, 2000.

[Mayhew, 1999] Mayhew, D.J.: The Usability Engineering Lifecycle: A practitioner's handbook for

user interface design. San Francisco, Calif., Morgan Kaufmann, 1999.

[Nielsen, 1993] Nielsen, J.: Usability Engineering. Boston, Mass., Acad. Press, 1993.

[Rozanski and Woods, 2005] Nick Rozanski, Eoin Woods: Software Systems Architecture. Working

with Stakeholders Using Viewpoints and Perspectives. Addison Wesley, 2005.

[Scherer et al., 2009] Scherer, S., Karamagioli, E., Titorencu, M., Schepers, J., Wimmer, M.A and

Koulolias, V.: Usability Engineering in eParticipation. In: European Journal of ePractice, Nr.

7, 2009, 79-91.

Relevant standards

[AMQP] AMQP 1.0 revision 0, Recommendation. AMQP Working Group, 17. August 2010.

http://www.amqp.org

[ARIA_W3C] Accessible Rich Internet Applications (WAI-ARIA) 1.0. W3C Working Draft, 16

September 2010. http://www.w3.org/TR/wai-aria/

[BPEL4P_OASIS] WS-BPEL Extension for People (BPEL4People) Specification, Version 1.1.

Committee Specification, 17 August 2010. http://docs.oasis-

open.org/bpel4people/bpel4people-1.1.html

[BPMN1.2_OMG] Business Process Model and Notation (BPMN), Version 1.2. OMG Standard,

January 2009. http://www.omg.org/spec/BPMN/1.2/

[BPMN2.0_OMG] Business Process Model and Notation (BPMN), Version 2.0 Beta 2. OMG

Working Draft, May 2010. http://www.omg.org/spec/BPMN/2.0/

[CMIS_OASIS] Content Management Interoperability Services (CMIS), Version 1.0. OASIS

Standard, 1 May 2010. http://docs.oasis-open.org/cmis/CMIS/v1.0/cmis-spec-v1.0.html

[ConnA_JSR112] JSR 112: J2EE Connector Architecture 1.5. Final Release, 24 December 2003.

http://www.jcp.org/en/jsr/detail?id=112

[CORBA3.1_OMG] - Common Object Request Broker Architecture (CORBA), Version 3.1. OMG

Standard, January 2008. http://www.omg.org/spec/CORBA/3.1/

[EJB_JSR220] JSR 220: Enterprise JavaBeans 3.0. Final Release, 11 May, 2006.

http://www.jcp.org/en/jsr/detail?id=220

[JBI_JSR208] JSR 208: Java Business Integration (JBI). Final Release, 25 August 2005.

http://jcp.org/en/jsr/summary?id=208

[JDBC_JSR54] JSR 54: JDBC 3.0 Specification. Final Release, 09 May 2002.

http://www.jcp.org/en/jsr/detail?id=54

[JDO_JSR12] JSR 12: Java Data Objects (JDO) Specification. Final Release 2, 16 September 2003.

http://www.jcp.org/en/jsr/detail?id=12

[JMS] Java Message Service, Version 1.1. 12 April 2002.

http://www.oracle.com/technetwork/java/index-jsp-142945.html

[JPA_JSR317] JSR 317: Java Persistence 2.0. Final Release, 10 December 2009.

http://www.jcp.org/en/jsr/detail?id=317

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

[JRE_JSR94] JSR 94: Java Rule Engine API. Final Release, 04 August 2004.

http://jcp.org/en/jsr/summary?id=94

[OWLS_W3C] OWL-S: Semantic Markup for Web Services. W3C Member Submission, 22

November 2004. http://www.w3.org/Submission/OWL-S/

[Port_JSR286] JSR 286: Portlet Specification 2.0. Final Release, 12 Jun 2008.

http://www.jcp.org/en/jsr/detail?id=286

[RDFS_W3C] RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recommendation, 10

February 2004. http://www.w3.org/TR/rdf-schema/

[RFSOA_OASIS] Reference Model for Service Oriented Architecture, Version 1.0. OASIS Standard,

12 October 2006. http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html

[UDDI_OASIS] UDDI Version 3.0.2. UDDI Spec Technical Committee Draft, 19 October 2004.

http://uddi.org/pubs/uddi_v3.htm

[UML2.3_OMG] Unified Modelling Language (UML), Version 2.3. OMG Standard, May 2010.

http://www.omg.org/spec/UML/2.3

[SAML_OASIS] Security Assertion Markup Language (SAML), Version 2.0. OASIS Standard, 15

March 2005. http://www.oasis-open.org/specs/#samlv2.0

[SAWSDL_W3C] Semantic Annotations for WSDL and XML Schema. W3C Recommendation, 28

August 2007. http://www.w3.org/TR/sawsdl/

[SConn_JSR279] JSR 279: Service Connection API for Java ME. Final Release, 16 November 2009.

http://www.jcp.org/en/jsr/detail?id=279

[SOAP_W3C] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). W3C

Recommendation, 27 April 2007. http://www.w3.org/TR/soap12/

[SysML_OMG] OMG Systems Modelling Language (SysML), Version 1.2. OMG Standard, June

2010. http://www.omg.org/spec/SysML/1.2/

[WCAG_W3C] Web Content Accessibility Guidelines (WCAG) 2.0. W3C Recommendation, 11

December 2008. http://www.w3.org/TR/WCAG20/

[WebDAV] RFC 4918: HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV).

The IETF Trust, 2007. http://www.webdav.org/specs/rfc4918.html

[WSAddr_W3C] Web Services Addressing 1.0 - Core. W3C Recommendation, 9 May 2006.

http://www.w3.org/TR/ws-addr-core/

[WSBPEL_OASIS] Web Services Business Process Execution Language, Version 2.0. OASIS

Standard, 11 April 2007. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[WSDL_W3C] Web Services Description Language (WSDL), Version 2.0. Part 1: Core Language.

W3C Recommendation, 26 June 2007. http://www.w3.org/TR/wsdl20/

[WSEn_W3C] Web Services Enumeration. W3C Working Draft, 5 August 2010.

http://www.w3.org/TR/ws-enumeration/

[WSEv_W3C] Web Services Eventing. W3C Working Draft, 5 August 2010.

http://www.w3.org/TR/ws-eventing/

[WSEvDesc_W3C] Web Services Event Descriptions. W3C Working Draft, 5 August 2010.

http://www.w3.org/TR/ws-event-descriptions/

[WSFrag_W3C] Web Services Fragment (WS-Fragment). W3C Working Draft, 5 August 2010.

http://www.w3.org/TR/ws-fragment/

[WSMdE_W3C] Web Services Metadata Exchange. W3C Working Draft, 5 August 2010.

http://www.w3.org/TR/ws-metadata-exchange/

[WSML_W3C] Web Service Modelling Language (WSML). W3C Member Submission, 3 June 2005.

http://www.w3.org/Submission/WSML/

[WSPolicy_W3C] Web Services Policy 1.5 - Framework. W3C Recommendation, 04 September

2007. http://www.w3.org/TR/ws-policy/

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

[WSResTr_W3C] Web Services Transfer. W3C Working Draft, 5 August 2010.

http://www.w3.org/TR/ws-transfer/

[WSRP_OASIS] Web Services for Remote Portlets Specification, Version 2.0. OASIS Standard, 1

April 2008. http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html

[XACML_OASIS] eXtensible Access Control Markup Language (XACML), Version 2.0. OASIS

Standard, 1 February 2005. http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-

core-spec-os.pdf

[XForms_W3C] XForms 1.1. W3C Recommendation, 20 October 2009.

http://www.w3.org/TR/xforms/

[XPath_W3C] XML Path Language (XPath), Version 1.0. W3C Recommendation, 16 November

1999. http://www.w3.org/TR/xpath/

[XQuery_W3C] XQuery 1.0: An XML Query Language. W3C Recommendation, 23 January 2007.

http://www.w3.org/TR/xquery/

[XSLT_W3C] XSL Transformations (XSLT), Version 1.0. W3C Recommendation, 16 November

1999. http://www.w3.org/TR/xslt

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

APPENDIX A: RELEVANT STANDARDS

The compliance with widely accepted standards is a natural requirement for development of almost all

type of product, including software systems such as OCOPOMO. It is, however, important to note that

the correspondence with standards is not obligatory; an application of particular standards is in most

cases voluntary and optional. Nevertheless, acceptance of standards during the design and

development is highly recommended, since it can bring a competition advantage for the resulting

product. For software systems it can, in addition, ensure a compatibility and interoperability with other

standardised solutions.

This section provides an outline of standards that are relevant to the OCOPOMO platform on both

conceptual and technological levels. It summarises the standardised frameworks and approaches of

integration technology background, which were mentioned or referenced in chapter 3.1. In addition,

standards for modelling technologies, Web services, IT service management, and other related fields

are presented and briefly described. The list of standards is organised according to particular vendors,

standardisation bodies such as ISO, IEC, W3C, OMG, OASIS, including technology providers such as

Sun/Oracle that provide some of relevant industrial standards.

A.1. ISO AND ISO/IEC STANDARDS

The International Organization for Standardization (ISO)
134

 is probably the most authoritative

international standardisation body, which proposes and publishes world-wide proprietary industrial

and commercial standards. It covers practically all the areas where the regulation by standards can be

applied. Namely, assuming the fields of interest of OCOPOMO, it includes such areas as information

technology, quality management, energy systems and renewable energy sources, financial services,

environmental management, and many others.

The standardisation work of ISO is organised into technical committees (TC), subcommittees (SC) and

working groups (WG), which involve participants of national standardisation organisations as well as

of other relevant standardisation bodies of particular areas. For example, the broad area of information

technologies is processed by the Joint Technical Committee No. 1 (JTC 1) of ISO and International

Electrotechnical Commission (IEC
135

). The world-wide acceptance of ISO standards is ensured by

close co-operation with national standardisation bodies of ISO member countries and with numerous

organisations including, for example, European Commission, ANSI, United Nations, UNESCO, etc.

The OCOPOMO platform in the aspects of architectural design, software engineering, data storage

and access, documentation development, system operation and maintenance may be supported by ISO

standards of information technology, which are produced by the ISO/IEC JTC 1 joint committee and

its subcommittees. Some of the most relevant standards published in this field are listed in the

following outline:

JTC 1 : Information technology

 ISO/IEC 29361-29363:2008 Web Services Interoperability. Three standards define the Web

services profiles, consisting of a set of non-proprietary specifications, along with clarifications

and amendments to those specifications that are intended to promote interoperability.

134

 http://www.iso.org
135

 http://www.iec.ch

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 ISO/IEC TR 29138:2009 Accessibility considerations for people with disabilities. Three

technical reports (TR), which identify a collection of user needs of people with disabilities for

documentation developers to take into consideration when developing or revising the

documentation materials, together with a guidance on meeting these needs.

SC 7 : Software and systems engineering

 ISO/IEC TR 9126:2001-04 Product quality. The set of standards provides six external quality

characteristics and internal metrics for attribute-based measuring of the overall quality of

software systems.

 ISO/IEC 20000:2005-10 Service management. The set of standards, which is based on British

standard BS 15000, defines the requirements for a service provider to deliver managed IT

services. By adopting structured, proactive working practices, it enables service providers to

understand how to enhance the quality of service delivered to their customers, both internal

and external.

SC 32 : Data management and interchange

 ISO/IEC 9075:2008 Database languages - SQL. The set of standards defines the SQL

language, including the conceptual framework, formal grammar, data structure and the

operations on data stored in that structure.

 ISO/IEC TR 10032:2003 Reference Model of Data Management. The standard defines

common terminology and concepts related to all data held within information systems.

 ISO/IEC 15944:2002-09 Business Operational View. The set of standards addresses the

identification, registration, referencing and reusability of common objects, scenarios and

scenario components, in a business transaction.

 ISO/IEC 19763:2010 Metamodel framework for interoperability. It specifies a metamodel that

provides a facility to register administrative and evolution information related to ontologies,

independent of the languages in which they are expressed. The metamodel also administers

the authoritative extent of ontologies, which indicates how commonly they can be used.

SC 34 : Document description and processing languages

 ISO/IEC 19757:2006-09 Document Schema Definition Language. A definition of a set of

languages that can be used to specify one or more validation processes performed against

XML or SGML documents.

 ISO/IEC 13250:2006-09 Topic Maps. The set of standards specifies the Topic Maps data

model. It defines an abstract structure and interpretation of topic maps, the rules for merging

topic maps and a set of fundamental subject identifiers.

When applying the IT infrastructure in an environment of a particular organisation (e.g. setting up the

OCOPOMO system in a municipality), the quality of the whole solution needs to be assured on a

standardised level. The quality management of IT services is specified by the above-mentioned

ISO/IEC 20000 standards. In addition, ISO provides a set of standards on general quality management

in an organisation, which are generated and maintained within the TC 176 Quality management and

quality assurance. The documents published in this TC define basic concepts and terminology of

quality management systems, specify quality requirements, supported technologies, and guidelines for

applying these systems in practice. These issues are published in well-known and widely accepted

standards of ISO 9000 family, including, for example:

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 ISO 9000:2005 Fundamentals and vocabulary of quality management systems.

 ISO 9001:2008 Requirements on quality management systems.

 ISO 9004:2009 Managing for the sustained success of an organization - A quality

management approach.

 ISO 10005-10007:2003-05 Guidelines for quality plans, quality management in projects, and

configuration management.

 ISO/TR 10013:2001 Guidelines for quality management system documentation.

 ISO 10014:2006 Guidelines for realizing financial and economic benefits.

 ISO 19011:2002 Guidelines for quality and/or environmental management systems auditing,

etc.

The ISO structure also contains several standardisation areas that should be taken into consideration

by the OCOPOMO pilot applications. It namely includes TC 68 financial services, TC 154 processes

data elements and documents in administration (Campania pilot), TC 207 environmental management,

TC 180 solar energy, TC 203 technical energy systems, and ISO/IEC NP 13273 energy efficiency and

renewable energy sources (KSR pilot). However, these standards are not directly related to the system

architecture and thus a more detailed description will be omitted here.

A.2. W3C STANDARDS AND RECOMMENDATIONS

The World Wide Web Consortium (W3C)
136

 is an international community that creates, publishes and

maintains standardisation documents for the World Wide Web. It is nowadays the main world-wide

authority in this field, with its 329 member organisations (September 2010). The W3C standards

include the areas of Web design and applications, Web architecture, Semantic web, XML technology,

Web of services and SOA, Web of devices, Web browsers and authoring tools. Specifications related

to web services, XML schemas or web accessibility, which particularly may be considered during the

development of OCOPOMO architecture, are presented in the following outline.

Web services and service-related issues, which are provided by the W3C Web Services Activity
137

:

 SOAP (Simple Object Access Protocol) is specified in the W3C Recommendation SOAP

Version 1.2 [SOAP_W3C], which was issued in April 27, 2007. It introduces the lightweight

protocol intended for exchanging structured information in a decentralised, distributed

environment. The standard consists of four documents that provide messaging framework

(Part 1), adjuncts as data model, encoding and RPC representation (Part 2), assertions and test

collection (Part 3), and the SOAP processing model with basic usage scenarios (Part 0).

 WSDL (Web Services Description Language) is specified in the W3C Recommendation Web

Services Description Language Version 2.0 [WSDL_W3C], issued in June 26, 2007. The

standard provides a model and an XML format for describing Web services. It defines a

language for describing the abstract functionality of a service as well as a framework for

describing the concrete details of a service description. The companion specification of

WSDL Part 2: Adjuncts describes extensions for message exchange patterns, operation safety,

operation styles and binding extensions.

136

 http://www.w3.org
137

 http://www.w3.org/2002/ws/Activity

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Additional specifications for web services include recommendations and working drafts on

addressing [WSAddr_W3C], policy [WSPolicy_W3C], resource transfer [WSResTr_W3C],

metadata exchange [WSMdE_W3C], eventing [WSEv_W3C], enumeration [WSEn_W3C],

fragmenting [WSFrag_W3C], and event descriptions [WSEvDesc_W3C].

Various XML-based languages and schemas for transforming and querying the data sources in XML

format, including the WSDL representation of web services, for example:

 XPath, specification of a formal language for addressing parts of an XML document

[XPath_W3C];

 XSLT, definition of the syntax and semantics of a language for transforming XML documents

into other XML documents [XSLT_W3C];

 XQuery, specification of a query language over XML documents and data sources of various

types [XQuery_W3C].

 XForms, a new platform-independent mark-up language for on-line interaction between a

person and another, usually remote, agent [XForms_W3C]. XForms are the successor to

HTML forms and are aiming at providing dynamism, multi-modality, and device

independence of web applications.

Semantic extensions of web services and the concept of Semantic web in general are supported by:

 SAWSDL recommendation [SAWSDL_W3C] defines a set of extension attributes for WSDL

and XML Schema languages that allows description of additional semantics of web services.

The specification defines how semantic annotation is accomplished using references to

semantic models, e.g. ontologies. It provides mechanisms by which concepts from the

semantic models, typically defined outside the WSDL document, can be referenced from

within WSDL and XML Schema components using annotations.

 Several ontology formats such as RDF Schema [RDFS_W3C], OWL-S (Semantic Markup for

Web Services) [OWLS_W3C], or WSML (Web Service Modelling Language)

[WSML_W3C].

W3C Web Accessibility Initiative (WAI)
138

 is aiming at developing strategies, guidelines, and

resources to help make the web accessible to people with disabilities. With the respect of designing

and building applications with web-based interfaces, as it is assumed for the OCOPOMO platform, the

most relevant is the WAI standardisation of web content:

 Web Content Accessibility Guidelines [WCAG_W3C] cover a wide range of recommendations

for making web content more accessible to people with disabilities, including blindness and

reduced vision, deafness and hearing loss, learning disabilities, cognitive limitations, limited

movement, speech disabilities, photosensitivity and combinations of these.

 Accessible Rich Internet Applications working draft [ARIA_W3C] provides an ontology of

roles, states, and properties that define accessible user interface elements and can be used to

improve the accessibility and interoperability of web content and applications.

138

 http://www.w3.org/WAI/

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

A.3. OASIS STANDARDS

The Organization for the Advancement of Structured Information Standards (OASIS)
139

 is a not-for-

profit consortium that drives the development, convergence and adoption of open standards for the

global information society. It produces fundamental and advanced Web services standards along with

standards for security, e-business, and standardisation efforts in the public sector and for application-

specific markets. Nowadays, OASIS has more than 5000 participants representing over 600

organisations and individual members in 100 countries.

The following list contains a selection of OASIS standards that might be of particular concern and

relevance of OCOPOMO, covering various aspects of business processes, interoperability, content

management, security policy issues and architecture of Web services applications.

 Universal Description, Discovery and Integration (UDDI) is an XML-based registry for

businesses world-wide to list themselves on the Internet. The UDDI Version 3.0.2

specification [UDDI_OASIS] describes the Web services, data structures and behaviours of all

instances of a UDDI registry.

 The Content Management Interoperability Services (CMIS) specification [CMIS_OASIS]

defines a domain model and Web services bindings that can be used by applications to work

with one or more Content Management repositories or systems.

 The Web Services Business Process Execution Language (WS-BPEL) specification

[WSBPEL_OASIS] defines a language for specifying business process behaviour based on

Web services. Processes in WS-BPEL export and import functionality by using Web service

interfaces exclusively. The WS-BPEL language is meant to be used to model the behaviour of

both executable and abstract processes.

 The WS-BPEL Extension for People (BPEL4People) specification [BPEL4P_OASIS]

introduces a process modelling extension to address human interactions in WS-BPEL. It

defines a new type of basic activity which uses human tasks as an implementation, and allows

specifying tasks local to a process or using tasks defined outside of the process definition.

 Information security policy and access control is supported by the XACML mark-up language

[XACML_OASIS] which should allow managing and enforcing the elements of a security

policy in all components of information systems in an enterprise or institution. Managing

security policy may include steps such as writing, reviewing, testing, approving, issuing,

combining, analysing, modifying, withdrawing, retrieving and enforcing policy.

 Security-related issues such as single sign-on, user authentication, entitlement, and attribute

information are supported by the Security Assertion Markup Language (SAML). This XML-

based framework, currently available in version 2.0 [SAML_OASIS], allows creating and

exchanging security information between on-line partners in web-based and/or service-

oriented applications.

 The Web Services for Remote Portlets (WSRP) specification [WSRP_OASIS] defines a set of

interfaces and related semantics which standardise interactions with components providing

user-facing mark-up, including the processing of user interactions with that mark-up. This

allows applications to consume such components as providing a portion of the overall user

application without having to write unique code for interacting with each component.

 The Reference Model for Service Oriented Architecture standard [RFSOA_OASIS] provides

an abstract framework for understanding significant entities and relationships between them

139

 http://www.oasis-open.org

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

within a service-oriented environment, and for the development of consistent standards or

specifications supporting that environment. It is based on unifying concepts of SOA and may

be used by architects developing specific service oriented architectures or in training and

explaining SOA.

In addition, OASIS provides a whole suite of standards proposing XML-based schemas and

frameworks for Web services applied in specific domains as, for example, healthcare, electoral

processes, general industry data formats, emergency information systems, library of books and papers

about computer hardware and software, etc.

A.4. OMG STANDARDS

The Object Management Group (OMG)
140

 is an international, open membership, not-for-profit

computer industry consortium, which was originally aimed at setting standards for distributed object-

oriented systems. Nowadays, OMG activities are mostly focused on modelling (programs, systems and

business processes) and provisioning of model-based standards – some of them, which may be

relevant for the OCOPOMO architecture design, are listed below.

OMG provides several well-known specifications for object request brokers and frameworks for data

interchange, which include:

 Common Object Request Broker Architecture (CORBA), the specification of an architecture

for middleware technology that provides interoperability among clients and servers distributed

over a heterogeneous environment [CORBA3.1_OMG]. CORBA includes a set of additional

specifications for component model, reflective operations for objects, interfaces, protocols,

etc.

 A set of OMG metadata specifications such as XML Metadata Interchange, Common

Warehouse Metamodel, Meta Object Facility, Ontology Definition Metamodel and several

other models
141

.

Modelling of business processes and complex systems is supported by OMG notations, frameworks

and techniques such as:

 The Business Process Model and Notation (BPMN)
142

 is a specification of a graphical format

for modelling abstract business processes. The version 1.2 of BPMN was released as the OMG

standard [BPMN1.2_OMG], while the next version 2.0 is still under development and is

available as a working draft [BPMN2.0_OMG].

 The Unified Modelling Language (UML)
143

 is a popular and frequently used set of graphical

and formal notations for general-purpose modelling. It is particularly applicable in the field of

software engineering, but can be employed for modelling of business processes and service-

based systems of various types. Currently it exists in the version 2.3 [UML2.3_OMG], where

the OMG standard includes two complementary specifications: Infrastructure (defines the

140

 http://www.omg.org
141

 http://www.omg.org/technology/documents/modeling_spec_catalog.htm
142

 http://www.bpmn.org
143

 http://www.uml.org

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

foundational language constructs) and Superstructure (defines the user level constructs). The

UML of version 1.4.2 was released as the ISO/IEC 19501 standard.

 The OMG Systems Modelling Language is a general-purpose graphical modelling language

for specifying, analyzing, designing, and verifying complex systems [SysML_OMG]. It

provides graphical representations with a semantic foundation for modelling system

requirements, behaviour, structure, and parameters, which is used to integrate with other

engineering analysis models. It is a subset of UML ver. 2 with extensions needed to satisfy the

requirements of the UML applied for systems engineering.

The above-listed OMG specifications are conceptually integrated into a proposal of the Model Driven

Architecture (MDA)
144

, which is a set of specifications that provide an open, vendor-neutral approach

for developing enterprise information systems. MDA separates business and application logic from

underlying platform technology. It is based on UML models and other related OMG modelling

standards, then it can be realised through any open or proprietary platform including Web services,

CORBA, .NET, J2EE, etc.

A.5. OTHER OPEN OR INDUSTRIAL STANDARDS

The OCOPOMO platform is proposed to be built upon the Java-related technologies, which were

originally produced by Sun Microsystems and currently are provided by Oracle. This proposal implies

the relevance of Java standards that are provided as Java Specification Requests (JSRs)
145

. Below we

present a selection of the industrial standards issued and maintained by Sun/Oracle and few other

vendors, which are organised according to the layers of data, business logic, and user interface.

Database storage, access, and connectivity:

 The Java Database Connectivity (JDBC) API is the industry standard for database-

independent connectivity between the Java programming language and a wide range of

relational SQL databases and other tabular data sources. Latest version of JDBC is published

in the JSR 54: JDBC 3.0 Specification [JDBC_JSR54].

 The Java Data Objects (JDO) specification, published as JSR 12: JDO Specification

[JDO_JSR12], provides definitions of data stores and transactions, together with a description

of selection and transformation of persistent storage data into native Java objects.

 The Java Persistence API, published in JSR 317: Java Persistence 2.0 [JPA_JSR317], is the

Java API for the management of persistence and object/relational mapping for Java enterprise

and standard environments.

Message-oriented middleware, business logic and data processing:

 The Java Message Service (JMS) API is a messaging standard [JMS] that allows application

components based on the Java 2 Platform, Enterprise Edition (J2EE) to create, send, receive,

and read messages. It enables distributed communication that is loosely coupled, reliable, and

asynchronous. With release 1.4 of the J2EE platform, the JMS provider may be integrated

with the application server using the J2EE Connector Architecture [ConnA_JSR112].

144

 http://www.omg.org/mda/
145

 http://www.jcp.org/en/jsr/

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 The Java Service Connection API, published as JSR 279 [SConn_JSR279], is a new high-

level API for connection services via frameworks supporting identity-based services,

discovery, and authentication. The API supports Service Oriented Architectures and other

similar network service application models.

 The Java Business Integration, provided as JSR 208 [JBI_JSR208], is a specification of

handling the principles of service oriented architecture and enterprise service bus in Java

implementations. Version 2.0, referenced as JSR 312, is currently under development.

 The Advanced Message Queuing Protocol (AMQP) is an emerging open standard [AMQP]

that defines the protocol and formats used for business messaging and information exchange

between server and client. It is provided and maintained by the AMQP Working Group
146

.

 The Java Rule Engine API, referenced as JSR 94 [JRE_JSR94], defines a lightweight-

programming interface that constitutes a standard API for acquiring and using a rule engine.

Architectures, content and presentation integration:

 The Enterprise JavaBeans specification, published as JSR 220: Enterprise JavaBeans 3.0

[EJB_JSR220], defines an architecture for the development and deployment of component-

based business applications. It is a server-side model that encapsulates the business logic of an

application and supports the features such as scalability, transactional data access and multi-

user security.

 The Portlet Specification, provided as JSR 286: Portlet Specification 2.0 [Port_JSR286],

defines an API for portlets - web-based components that enable integration between

applications and web portals. It also provides a portlet driver, which is a lightweight portlet

rendering environment.

 The Web-based Distributed Authoring and Versioning was prepared and published by the

IETF Trust as the RFC 4918 specification [WebDAV]. It defines a set of HTTP-based

methods, headers, and content-types for the management of web resource properties, creation

and management of resource collections, URL namespace manipulation, and resource locking.

It is accompanied with a set of specifications that enhance its basic functionality with

extensions of search, versioning, binding, calendaring, access control, etc.

146

 http://www.amqp.org

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

APPENDIX B: CMS COMPARISON

The following overview shows a comparison between Alfresco, Drupal, Joomla, Typo3, Plone,

XOOPs, and Wordpress as retrieved from http://www.cmsmatch.com [accessed on 16th September,

2010]
147

. Please, note that information is not provided for the latest version in particular for Alfresco.

Moreover, the comparison is made in a general (not OCOPOMO related) manner considering also

features not important for the project.

Figure 62 Summary of CMS comparison

Legend:

 No: feature not available; 0 points

 Limited (Paid): basic feature at extra cost; 1 point

 Limited (Add-on): basic feature, but as free plugin; 3 points

 Limited: free and included, but still basic; 5 points

 Yes (Paid): advanced but at extra cost; 6 points

 Yes (Add-on): advanced free plugin; 8 points

 Yes: the full works; 10 points

 Wordpress XOOPS Plone TYPO3 Joomla Drupal Alfresco

Software Details

Stability Mature Mature Mature Mature Mature Mature

Version 2.9.x 2.x 3.x 4.3beta1 1.5.x 6.15 0.x

Meta Score 83 89 89 88 74 83 77

Completed Listing 92% 98% 97% 98% 97% 100% 71%

Cost Estimate $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $15000.00

Available Languages 65 11 62 49 81 51

Learning Curve Flat Intermediate

Intermediate Intermediate Intermediate

One-Click Updates Yes
Yes (Add-

on)
Yes No

Yes (Add-

on)

Limited

(Add-on)

147

 See http://www.cmsmatch.com/compare/content-management-systems/170+11+9+844+1462+43+1463

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Wordpress XOOPS Plone TYPO3 Joomla Drupal Alfresco

Standards Compliance

Level
High High High High High High

Site Setup Wizard Yes Yes Limited Yes
Limited

(Paid)
Yes Limited

Content Management

Archives Yes Yes Yes
Yes (Add-

on)
Yes Yes

Content Categorization Yes
Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)
Yes Yes Yes

Content Construction

Kit

Yes (Add-

on)

Yes (Add-

on)
Yes Yes

Yes (Add-

on)

Yes (Add-

on)

Content Staging and

Merging

Yes (Add-

on)
Yes

Yes

(Add-on)
Yes

Yes (Add-

on)

Limited

(Add-on)
Yes

Content Tagging Yes
Yes (Add-

on)
Yes

Yes (Add-

on)

Yes (Add-

on)
Yes Yes

Content Templates Yes Yes Yes
Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
Yes

Custom Content Types Yes Yes Yes
Yes (Add-

on)

Yes (Add-

on)
Yes

Import-Export
Yes (Add-

on)

Yes (Add-

on)
Yes Yes

Yes (Add-

on)

Yes (Add-

on)
Yes

Printer, Email and

PDF Versions
Yes

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)
Yes

Yes (Add-

on)

Revisions and History Yes
Yes (Add-

on)
Yes Yes

Limited

(Add-on)
Yes Yes

Scheduling Yes
Yes (Add-

on)
Yes Yes Yes

Yes (Add-

on)
Yes

Subscriptions Yes Yes Yes
Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
No

Tag Cloud Yes
Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
Yes

Voting and Rating
Yes (Add-

on)
Yes

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
Limited

Core Applications

Advertising

Management

Yes (Add-

on)
Yes

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
No

Affiliate Tracking
Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
No

Calendar Yes
Yes (Add-

on)
Yes

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
Yes

Chat
Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
No

Commenting System Yes Yes Yes
Yes (Add-

on)

Yes (Add-

on)
Yes

Contact Form Yes Yes Yes Yes Yes Yes No

Contacts Management
Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)
Yes

Yes (Add-

on)
No

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Wordpress XOOPS Plone TYPO3 Joomla Drupal Alfresco

Events Management
Yes (Add-

on)

Yes (Add-

on)
Yes

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
No

FAQ Management
Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
Yes

File Repository and

Distribution

Yes (Add-

on)

Yes (Add-

on)
Yes Yes

Yes (Add-

on)

Yes (Add-

on)
Yes

Forms and Surveys Yes
Yes (Add-

on)

Yes

(Add-on)
Yes

Yes (Add-

on)

Yes (Add-

on)
No

Full-Text Document

Search

Yes (Add-

on)
Yes Yes

Yes (Add-

on)

Yes (Add-

on)

Graphs and Charts
Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
No

Guestbook
Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
No

Helpdesk / Ticketing

System

Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
No

HTTP Proxy

Yes
Yes

(Add-on)
Yes

No No

Internal Search Engine Yes Yes Yes Yes Yes Yes Yes

Lightbox (or variants)
Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)
Yes

Yes (Add-

on)

Link Management Yes
Yes (Add-

on)
Yes

Yes (Add-

on)
Yes

Yes (Add-

on)
Yes

Live Chat
Yes (Add-

on)

Yes (Add-

on)

Limited

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)

Media Gallery
Yes (Add-

on)
Yes Yes

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
Yes

Newsletter

Management

Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
No

Polls
Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)
Yes Yes No

Sitemap
Yes (Add-

on)

Yes (Add-

on)
Yes Yes

Yes (Add-

on)

Yes (Add-

on)
Limited

Streaming Audio

Management

Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)
Yes

Yes (Add-

on)

Yes (Add-

on)

Streaming Video

Management

Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)
Yes

Yes (Add-

on)

Yes (Add-

on)

Tests, Quizzes and

Raffles

Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
No

XML Sitemap for

Search Engines

Yes (Add-

on)

Yes (Add-

on)
Yes

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)

Flexibility

Interface Localization

(l10n)
Yes Yes Yes Yes Yes Yes Yes

Internationalization

(i18n)
Limited Yes Yes Yes

Yes (Add-

on)
Yes Yes

Language Negotiation Limited Yes Yes Yes Yes (Add- Yes

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Wordpress XOOPS Plone TYPO3 Joomla Drupal Alfresco

on)

Multi-Site from 1

Codebase

Yes (Add-

on)

Yes (Add-

on)
Yes Yes Yes (Paid) Yes Yes

Multi-Site from 1

Database

Yes (Add-

on)

Yes (Add-

on)
Yes Yes Yes (Paid) Yes

Multiple Domains

Management

Yes (Add-

on)
Yes Yes Yes

Limited

(Add-on)

Yes (Add-

on)
Yes

Right to Left

Language Support
Yes Yes Yes

Yes (Add-

on)
Yes Yes

Interoperability

CGI Mode Support No Yes Yes Yes No
Yes (Add-

on)
No

Content Syndication

(RSS)
Yes Yes Yes

Yes (Add-

on)
Yes Yes Yes

Database Query Editor
Yes (Add-

on)

Yes (Add-

on)
Yes Yes

Yes (Add-

on)

Yes (Add-

on)

Database-to-Web

External Databases

Limited

(Add-on)
Yes

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)
Yes

FTP Support
Limited

(Add-on)

Yes (Add-

on)
Yes

Yes (Add-

on)
Yes

Yes (Add-

on)
Yes

iCal
Yes (Add-

on)

Yes (Add-

on)
Yes

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
No

Section 508 Yes Limited Yes Yes Limited
Yes (Add-

on)

Text Browser Support
Yes (Add-

on)
Yes Yes Yes

Yes (Add-

on)

Yes (Add-

on)

UTF-8 Support Yes Yes Yes Yes Yes Yes Yes

W3C XHTML

Compliant
Yes Yes Yes Yes Yes Yes Yes

WAI Compliant Limited Limited Yes Yes Limited
Yes (Add-

on)
Yes

Web Services API
Yes (Add-

on)
Yes Yes

Yes (Add-

on)

Yes (Add-

on)
Yes Yes

WebDAV Support
Yes (Add-

on)

Yes (Add-

on)
Yes

Limited

(Add-on)

Yes (Add-

on)

Yes (Add-

on)
Yes

Layouts, Design and Templates

Content Type

Theming

Yes (Add-

on)
Yes Yes Yes

Yes (Add-

on)
Yes

Drag and Drop

Layouts

Yes (Add-

on)
No

Yes (Add-

on)
No

Yes (Add-

on)

Granular CSS Classes
Yes (Add-

on)
Yes Yes Yes Yes Yes

Scheduled Theming
Yes (Add-

on)

Yes (Add-

on)
Yes No

Yes (Add-

on)

Style Wizard
Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)
Limited No

Sub Theming Yes (Add- Yes Yes Yes (Add- Yes Yes

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Wordpress XOOPS Plone TYPO3 Joomla Drupal Alfresco

on) (Add-on) on)

Template Language Yes Yes Yes Yes Yes Yes Yes

Theming / Skinning Yes Yes Yes Yes Yes Yes Yes

URL Path Theming
Yes (Add-

on)
Yes

Yes

(Add-on)
Yes Yes Yes

Web-based Template

Management
Yes Yes Yes Yes Limited Yes Yes

Mobile Internet

Device Capabilities

Caching

Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)
No

Limited

(Add-on)

Limited

(Add-on)

Device Capabilities

Detection

Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)
Limited

Limited

(Add-on)

Yes (Add-

on)

Device Groups
Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)
No

Limited

(Add-on)

Site Wizard for Mobile

Site

Yes (Add-

on)

Yes (Add-

on)
No

Limited

(Add-on)

SMS Support
Yes (Add-

on)

Limited

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)

Templates per Device

Group

Yes (Add-

on)

Yes (Add-

on)
Yes

Limited

(Add-on)

Limited

(Add-on)

Unique Mobile

Content

Yes (Add-

on)

Yes (Add-

on)

Limited

(Add-on)
Yes

Limited

(Add-on)

Yes (Add-

on)

Page Editing

Clipboard Yes Yes Yes Yes Yes No Yes

Copy / Paste from

Office
Yes Yes Yes Yes

Limited

(Add-on)

Yes (Add-

on)
Yes

Email Content to Site
Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
Yes

External Editor No
Yes (Add-

on)

Yes

(Add-on)

Limited

(Add-on)
Yes

Limited

(Add-on)
Limited

Image Auto

Thumbnails
Yes Yes Yes Yes

Yes (Add-

on)

Yes (Add-

on)
Yes

Image Editing Yes Yes
Yes

(Add-on)

Yes (Add-

on)

Limited

(Add-on)

Yes (Add-

on)

Limited

(Add-on)

Image Resizing Yes Yes Yes Yes
Yes (Add-

on)

Yes (Add-

on)
Yes

Macro Language No Yes Yes Yes No Limited Yes

Server Page Language
Yes (Add-

on)
Yes Yes Yes

Yes (Add-

on)
Yes Yes

Spelling Checker Yes
Yes (Add-

on)

Yes

(Add-on)
Yes

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)

Trash Bin Yes Yes
Yes

(Add-on)
Yes Yes

Yes (Add-

on)
Yes

Undo History Yes
Yes (Add-

on)
Yes Yes Yes No Yes

WYSIWYG Editor Yes Yes Yes Yes Yes
Yes (Add-

on)
Yes

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Wordpress XOOPS Plone TYPO3 Joomla Drupal Alfresco

Performance

Advanced Caching
Yes (Add-

on)
Yes Yes Yes Yes Yes Yes

Automatic Meta Tags
Yes (Add-

on)

Yes (Add-

on)
Yes

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
Yes

Bandwidth

Optimization

Yes (Add-

on)
Yes Yes

Yes (Add-

on)

Limited

(Add-on)
Yes Limited

Database Optimization
Yes (Add-

on)

Yes (Add-

on)
Yes Yes

Limited

(Add-on)

Yes (Add-

on)
No

Database Query

Caching
Limited Yes Yes Yes

Yes (Add-

on)
Yes

Database Replication
Yes (Add-

on)
No Yes Yes

Yes (Add-

on)

Yes (Add-

on)
Yes

Friendly URLs Yes
Yes (Add-

on)
Yes

Yes (Add-

on)
Yes Yes Yes

Load Balancing
Yes (Add-

on)
Yes Yes Yes

Limited

(Add-on)

Yes (Add-

on)
Yes

Minify Javascipt
Yes (Add-

on)

Yes (Add-

on)
Yes

Yes (Add-

on)

Limited

(Add-on)
Yes

Search Engine

Optimization
Yes

Yes (Add-

on)
Yes Yes

Yes (Add-

on)

Yes (Add-

on)
Yes

Static Content Export Yes Yes
Yes

(Add-on)
Yes Yes

Yes (Add-

on)
Yes

Security

Audit Trail Limited
Yes (Add-

on)
Yes Yes Limited Yes Yes

Captcha Anti-Spam Yes
Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
No

Content Approval Yes Yes Yes Yes Yes Yes Yes

Database

Backup/Restore

Yes (Add-

on)

Yes (Add-

on)
Yes Yes

Yes (Add-

on)

Yes (Add-

on)
Yes

Email Verification Yes Yes Yes Yes Yes Yes No

Error Reporting Limited Limited
Yes

(Add-on)
Yes Limited Yes Yes

Kerberos

Authentication
No

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
Yes

LDAP Authentication

Yes (Add-

on)
Yes

Yes (Add-

on)
Yes

Yes (Add-

on)
Yes

Login History Limited
Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)
Limited Yes Yes

NIS Authentication

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)

Limited

(Add-on)
No

NTLM Authentication

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)
Yes

Password Encryption Yes Yes Yes Yes Yes Yes

Pluggable

Authentication
Limited

Yes (Add-

on)
Yes Yes Yes

Yes (Add-

on)
Yes

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Wordpress XOOPS Plone TYPO3 Joomla Drupal Alfresco

Sandbox
Yes (Add-

on)
Yes Yes Yes

Yes (Add-

on)

Yes (Add-

on)
Yes

Scheduled Backups
Limited

(Add-on)

Yes (Add-

on)

Yes

(Add-on)

Limited

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Session Management

Yes Yes Yes Yes Yes Limited

SMB Authentication

No
Yes

(Add-on)
Yes

No Yes

SSL Support
Yes (Add-

on)
Yes Yes Yes

Yes (Add-

on)

Yes (Add-

on)
Yes

Versioning Yes Yes Yes Yes
Yes (Add-

on)
Yes Yes

Site Administration

Administration

Dashboard
Yes

Yes (Add-

on)
Yes Yes Yes Limited Yes

Drag and Drop

Interface
Yes

Yes (Add-

on)
Yes Limited No Yes Limited

File and Document

Manager

Yes (Add-

on)

Yes (Add-

on)
Yes Yes

Yes (Add-

on)

Yes (Add-

on)
Yes

Google Analytics
Yes (Add-

on)

Yes (Add-

on)
Yes

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)

Inline Content

Administration

Yes (Add-

on)
Yes Yes Yes Limited Yes No

Internal Search for

Admin
Yes Yes Yes Yes Yes Yes

Link Checker
Yes (Add-

on)
Limited Yes Yes

Yes (Add-

on)

Yes (Add-

on)
Limited

Mass Upload Yes Yes Yes Yes
Yes (Add-

on)

Yes (Add-

on)
Yes

Media Library Yes Yes Yes
Yes (Add-

on)
Yes

Yes (Add-

on)
Yes

Metadata Yes Yes Yes
Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
Yes

Off-line Maintenance

Page
Yes Yes No Yes Yes Yes

On-line

Administration
Yes Yes Yes Yes Yes Yes Yes

Personal Dashboard Yes
Yes (Add-

on)
Yes Yes Limited

Yes (Add-

on)

Site Navigation

Management

Yes (Add-

on)
Yes Yes Yes Yes Yes Yes

Statistics
Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)
Yes Yes No

Translation Strings

Management

Yes (Add-

on)
Yes Yes

Yes (Add-

on)

Yes (Add-

on)
Yes

Workflow Engine
Yes (Add-

on)

Yes (Add-

on)
Yes Yes Limited

Yes (Add-

on)
Yes

Zip Archive Support Yes Yes Yes Yes (Add- Yes (Add- Yes (Add- Yes

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Wordpress XOOPS Plone TYPO3 Joomla Drupal Alfresco

(Add-on) on) on) on)

Support

Certification

Programme
No Yes No Yes No Yes Yes

Code Skeletons Limited Yes Yes Yes Limited Yes Yes

Commercial Manuals Yes Yes Yes Yes Yes Yes Yes

Commercial Support Yes Yes Yes Yes Yes Yes Yes

Community Forums Yes Yes Yes Yes Yes Yes Yes

Developer Community Yes Yes Yes Yes Yes Yes Yes

Issue Tracking Yes Yes Yes Yes Yes Yes Yes

Mailing Lists Yes Yes Yes Yes Yes Yes No

On-line Help Yes Yes Yes Yes Yes Yes Yes

Support Network

Subscription
Yes (Paid)

Yes (Add-

on)

Yes

(Paid)
Yes (Paid)

Yes (Add-

on)

Trainings and

Seminars
Yes Yes Yes Yes Yes Yes Yes

User Conferences Yes Yes Yes Yes Yes Yes Yes

Users

Avatars

Yes Limited
Yes (Add-

on)
Yes

Yes (Add-

on)

Buddy List
Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)

Memberlist

Yes Yes
Yes (Add-

on)
Yes

Yes (Add-

on)

Memberlist Search

Yes Yes
Yes (Add-

on)
Yes Yes

OpenID Login Support
Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)
Yes Yes

Yes (Add-

on)
Limited

Paid Content

Subscriptions

Yes (Add-

on)

Yes (Add-

on)

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
No

Private Messaging

System

Yes (Add-

on)
Yes

Limited

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)
No

Public User Page
Yes (Add-

on)

Yes (Add-

on)
Yes

Yes (Add-

on)
Yes (Paid) Yes

Registration Form
Yes (Add-

on)
Yes Yes

Yes (Add-

on)
Yes Yes Yes

Registration Form

Custom Fields

Yes (Add-

on)
Yes Yes

Yes (Add-

on)

Yes (Add-

on)
Yes Limited

User Access Control
Yes (Add-

on)
Yes Yes Yes

Yes (Add-

on)
Yes Yes

User Contributions
Yes (Add-

on)
Yes Yes

Yes (Add-

on)
Yes Yes Limited

User Groups
Yes (Add-

on)
Yes Yes Yes

Yes (Add-

on)

Yes (Add-

on)
Yes

User Points / Karma

Rating

Yes (Add-

on)

Limited

(Add-on)

Yes (Add-

on)

Yes (Add-

on)

Yes (Add-

on)

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

 Wordpress XOOPS Plone TYPO3 Joomla Drupal Alfresco

User Preferences Yes Yes
Limited

(Add-on)

Yes (Add-

on)
Yes Yes

User Profile Custom

Fields

Yes (Add-

on)
Yes

Yes

(Add-on)

Yes (Add-

on)

Yes (Add-

on)
Yes

User Profiles Yes Yes Yes
Yes (Add-

on)

Yes (Add-

on)
Yes Yes

User Signatures

Yes

Yes (Add-

on)

Yes (Add-

on)

Who's On-line List

Yes

Yes (Add-

on)

Yes (Add-

on)
Yes

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

APPENDIX C: USER INTERFACE MOCK-UPS

Figure 63 Mock-up for Home page

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 64 Mock-up for registration at the system

Figure 65 Mock-up for password prompt

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 66 Mock-up for user‟s profile

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 67 Mock-up for editing user‟s profile

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 68 Mock-up for the Dashboard

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 69 Mock-up for customising the Dashboard

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 70 Mock-up that shows the OCOPOMO project description

Figure 71 Mock-up that shows where users start to contribute

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 72 Mock-up for starting with collaborative scenario building by viewing existing ones

Figure 73 Mock-up for creating a new scenario

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 74 Mock-up for viewing scenarios

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 75 Mock-up for contacting authors of the scenario

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 76 Mock-up for inviting people to join the scenario generation

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 77 Mock-up for getting an overview of all scenario-related discussions structured by

topic

Figure 78 Mock-up for viewing and contributing to a specific scenario-related discussion

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 79 Upload documents, inserting data about document and setting conditions

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 80 Mock-up for Frequently Asked Questions (FAQ)

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 81 Mock-up for news entry

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 82 Mock-up for creating a project

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 83 Mock-up for inviting to a project

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Figure 84 Mock-up for projects overview

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

APPENDIX D: SPECIFICATION OF DATA OBJECTS BASED ON USER

REQUIREMENTS

User requirements, provided in [Bicking et al., 2010], were analysed to identify proper data objects

and information resources for the OCOPOMO platform. The results of this analysis are presented in

the table below. The table columns, from left to right, contain:

1. Identifier and name of the main requirement (i.e. which initially invoked a definition of specific

information resource or data type) together with its type and priority. Optionally, a list of other

relevant requirements is included.

2. Identification of the information resources proposed to store and maintain the data (information)

for the required functionality.

3. Identification of particular data objects within the information resources. The name of a data

element is marked in boldface.

The resulting structure of data objects, their relationships and distributions within the information

resources are described and discussed in more details in section 6.2.2.

Requirement ID &

name,

type & priority:

Identified:

Information resources Data objects

T-1 Discussion forums

Functional, Must-have

(includes T-1-1, T-1-2,

T-1-3, T-1-4, T-1-5, T-

12, T-14)

 e-Participation information

resources (ePartIR) –

Discussions. Space for persistent

storage of discussions and their

elements.

 User management, security.

Authentication and authorization

data for users.

 CMS – Context. Linking,

capturing the context of

published information. Relations

of discussions to scenarios,

policy models, documents, chat,

etc.

 discussion forum:

discussion, thread, topic of

interest (a reference to

scenario, policy model,

document, or other resource

type), conditions of use

(moderated / non-

moderated), attached ―Rules

for engagement‖, context

(related information

resources)

 discussion contribution:

content, properties

(date/time, contributor),

rating

 user: discussion moderator,

contributor

T-4 Chat

Functional, Must-have

 ePartIR – Chat. Space for

persistent storage of chats, on-

line discussions.

 User management, security.

Authentication and authorization

data for users.

 CMS – Context. Relations of a

chat to scenarios, policy models,

documents, discussions, etc.

 chat: content, properties,

status, history, context

(related information

resources)

 user: chat user, moderator

T-5 CMS functionality  CMS. Space for persistent  document: content, format,

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Functional, Must-have storage, access, and publishing

of documents, including their

versions.

 User management, security.

Authentication and authorization

data for users.

 CMS – Context. Relations of

published documents to

scenarios, policy models, other

documents, discussions, chat,

etc.

properties, versions, context

(related information

resources)

 document flow: creation,

editing, templates, access

rights

 user: doc creator, editor

T-7 Opinion polling tool

Functional, Must-have

(includes T-8, T-9, T-10,

T-11;

integrated requirement I-

10)

 ePartIR – Opinion polling
(OP). Space for persistent

storage, access, and publishing

of opinion polls, including their

versions.

 User management, security.

Authentication and authorization

data for users.

 CMS – Context. Relations of an

opinion polling to scenarios,

policy models, documents,

discussions, chat, etc.

 opinion poll: settings (time

interval, participants,

percentage of the filled in

forms), status, polling subject

(a reference to scenario,

policy model, document, or

other resource type), versions

(possibility to modify the

answers), history, results

 OP question: question type

(multi-choice, text-based,

etc.)

 OP answer: answer type,

version, history

 user: authorized OP creator,

OP participant

T-16 Agent-based

simulation tool

Functional, Must-have

(includes T-17, T-18, T-

19,

T-20, T-21 (Should-

have), T-22, T-23;

non-functional

requirements T-35, T-36,

NFR03-PM, NFR04-PM,

NFR05-PM, NFR07-PM,

NFR08-PM, NFR09-PM,

NFR10-PM, NFR11-PM,

NFR12-PM, NFR13-PM,

NFR14-PM;

integrated requirements

I-18, I-24, I-25, I-26, I-

27,

I-28)

 Simulation Model (SM). Space

for persistent storage, access,

and publishing of policy models

and related simulations.

 User management, security.

Authentication and authorization

data for users.

 CMS – Context. Relations of a

policy model to scenarios,

documents, discussions, chat.

 simulation model: content,

state, properties / parameters,

agents, rules, versions

 SM agent: ID/name,

properties

 SM rule: content, properties

 simulation: content, events,

properties, context (related

scenarios, documents, etc.),

level of details, time scale,

cycle No., related policy

model

 SM event: content, type,

properties

 scenario: ID/name,

document, properties,

versions, reference to a

policy model

 user: authorized PM creator,

PM editor, PM participant,

policy stakeholder

T-24 News functionality

Functional, Must-have

 ePartIR – News. Space for

persistent storage, access, and

 news: content, format,

properties, context (related

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

(includes T-C2) publishing of news.

 CMS – Context. Relations of

news to scenarios, policy

models, documents, discussions,

chat, opinion polling, etc.

information resources),

rating

 user: news creator / editor /

publisher

T-25 Commenting

functionality

Functional, Must-have

 ePartIR – Comments. Space

for persistent storage, access,

and publishing of comments.

 CMS – Context. Relations of

comments to scenarios, policy

models, documents, discussions,

chat, etc.

 comment: content, format,

reference to commented

resource, properties, context

(related information

resources)

 user: authorized creator /

editor of comments

T-28 Calendar

Functional, Should-have

 ePartIR – Calendar. Space for

persistent storage, access, and

automatic publishing of events

(based on date/time settings).

 CMS – Context. Relations of

calendar events to scenarios,

policy models, documents,

discussions, chat, etc.

 calendar: events, properties

 event: date/time settings of

validity, properties, context

(related information

resources)

 user: authorized creator /

editor of events

T-29 Newsletter

Functional, Must-have

 ePartIR – Newsletter. Space for

persistent storage, access, and

publishing of newsletter

documents.

 CMS – Context. Relations of a

newsletter to scenarios, policy

models, documents, discussions,

chat, etc.

 newsletter: content, format,

properties, context (related

information resources),

means of delivery list of

recipients / subscribers

 e-mail notification:

properties (sender, addressee,

subject,...)

 user: newsletter creator /

editor / publisher, newsletter

recipients / subscribers

T-30 RSS

Functional, Must-have

 ePartIR – RSS. Space for

persistent storage, access, and

publishing of RSS

representations of information.

 RSS feed: XML content,

references to related

information resources

T-34 E-mail

notifications

Functional, Must-have

 ePartIR – E-mail notifications.

Space for persistent storage and

access of e-mail messages sent

to participants.

 e-mail notification:

properties (sender, addressee,

subject,...), awareness

frequency

(daily/weekly/monthly)

 user: notification creator /

editor, notification recipients

/ subscribers

T-38 Transcription tool

Functional, Should-have

 ePartIR – Transcription. Space

for persistent storage, access,

and publishing of

communication transcriptions

(audio, video).

 transcription: properties,

format, reference to

transcribed information

resource

T-39 Computer-assisted

Qualitative Data

 CMS – Textual Data Analysis
(TDA). Space for persistent

 document: content, format,

properties, versions, context

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

Analysis Software Tool

Functional, Must-have

(includes T-40 (Should-

have), T-41 (Nice-to-

have), T-42 (Should-

have) , T-43 (Nice-to-

have))

storage and access of text

phrases and their annotations

(using meta-data tags).

 CMS – Context. Relations /

links of text phrases (passages)

to information resources

(scenarios, policy models, other

documents, discussions, chat,

etc.).

(related information

resources)

 text phrase: ID, position in

the text (start, length),

properties

 meta-data tag: name,

properties, related tags

 tag vocabulary: list

(hierarchy, structure) of tags

 user: doc editor / annotator

FR01_PM Policy model

transformation

Functional, Must-have

(includes FR02_PM -

FR27_PM;

integrated requirements I-

2, I-3, I-4, I-5, I-7, I-11,

I-12, I-13, I-14, I-15, I-

17, I-23)

 CMS – Workspace. Integrated

data structure of policy models

and e-Participation tools for

scenario generation.

 Narrative scenario. Space for

persistent storage, access, and

publishing of text-based

narrative scenarios, related to a

policy model.

 SM. Space for persistent storage,

access, and publishing of policy

models and related simulations.

 CMS – Context. Relations of

narrative scenarios and PMs to

documents, discussions, chat,

etc.

 workspace: ID, scenario

(together with related policy

models), ePartIR resources

(discussions, opinion polls,

etc.), users (stakeholders),

properties

 scenario: ID/name,

document, properties,

versions, reference to a

policy model

 context: parent scenario,

references to related

resources (policy models,

documents, discussions, etc.)

 simulation model: content,

state, properties / parameters,

versions, environment (i.e.

environmental aspects of the

descriptive scenario),

assumptions (minimal set of

assumptions the model

should carry)

 SM event: content, type,

properties

 SM rule: : content,

properties, clauses, related /

dependent rules

 SM agent: ID/name,

properties, reference to an

user

 user: policy stakeholder,

facilitator

TP-1 Rules in policy

models

Functional, Must-have

(includes TP-2;

integrated requirements

I-39; I-40)

 SM – Rules. Space for persistent

storage and access of rules

defined for a policy model.

 CMS – Textual Data Analysis
(TDA). Space for persistent

storage and access of text

phrases and their annotations

(using meta-data tags).

 SM rule: content, properties,

clauses, related / dependent

rules

 SM rule clause: content,

properties, related clauses

 language translation:

clause, text phrase

 text phrase: ID, position in

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

the text (start, length),

properties

TP-3 Outputs of policy

modelling

Functional, Must-have

(includes TP-5)

 SM – Output. Space for textual

outputs generated by a

simulation. The output is a type

of document, which belongs to

the TDA. It can also be used as

an initial narrative scenario.

 SM output: content, format,

properties, versions,

reference to parent policy

model

T-37 Authorization and

authentication

Non-functional, Must-

have

(includes integrated

requirements I-F-I1, I-F-

I2, I-F-I3, I-F-I4, I-F-I5,

I-F-I6)

 User management, security.

Authentication and authorization

data for users.

 user: ID, properties, profile,

roles, individual access

rights, credentials

 user profile: properties /

parameters, preferences

 user role: properties, role-

based access rights,

credentials, references to

tools / modules

NFR01_PM Scenario

description

Non-functional, Must-

have

(includes integrated

requirement I-22)

 Narrative scenario. Space for

persistent storage, access, and

publishing of text-based

narrative scenarios, related to a

policy model.

 Narrative scenario –

Consistent Conceptual

Description (CCD): structure of

concepts (tags) and annotations

describing a scenario.

 CMS – TDA. Space for

persistent storage and access of

text phrases and their

annotations (using meta-data

tags).

 scenario: ID/name,

document, properties,

versions, reference to a

policy model

 scenario CCD: a structure of

tags (concepts) and text

phrases, extracted from the

textual content of the

scenario

 text phrase: ID, position in

the text (start, length),

properties

 meta-data tag: name,

properties, related tags

 tag vocabulary: list

(hierarchy, structure) of tags

NFR02_PM Language

translation

Non-functional, Should-

have

(includes NFR06-PM;

integrated requirement I-

30)

 Narrative scenario – CCD

language translation: structures

for mapping natural language

words or phrases to the concepts

(tags).

 CMS – TDA. Space for

persistent storage and access of

text phrases and their

annotations (using meta-data

tags).

 scenario CCD: a structure of

tags (concepts) and text

phrases, extracted from the

textual content of the

scenario

 CCD mapping: word /

phrase, meta-data tag

(concept)

 meta-data tag: name,

properties, related tags

 tag vocabulary: list

(hierarchy, structure) of tags

I-1 ICT toolbox as a

portal-based web

application

Integrated, Must-have

 Centralized data repository:

integrated data storage with a

unified access, suitable for web

applications.

 data connector: session,

connection, user, data ID,

data type, properties

D2.1 PLATFORM ARCHITECTURE AND

FUNCTIONAL DESCRIPTION OF COMPONENTS

 V1.0

20/12/2010

I-2 Transformation

table

Integrated, Must-have

 CMS – Context. Space for

persistent storage and access of

relations (association links)

between two information

resources (e.g., between

scenarios and policy models,

between scenarios and

documents, etc.).

 context: session, connection,

user, data ID, data type,

properties

I-5 Search

Integrated, Must-have

(includes I-6)

 CMS – Search. Space for

persistent storage of indexed

data (text-based documents,

scenarios, meta-data,

discussions, etc.); should allow

quick access for search and data

retrieval.

 search index: indexed data,

data type, last indexed date,

properties

I-19 Logs

Integrated, Must-have

(includes I-20, I-29)

 CMS – Log. Space for persistent

storage of system logs, generated

by various resources (scenario

generation, transformation, user

actions, etc.); should allow

filtering and searching the stored

data.

 log index: data ID, data type,

actor / user, date / time,

properties

I-32 Workflow support

Integrated, Must-have

 CMS – Workflow. Space for

persistent storage of workflow

sequences, tasks and actions

performed on various resources.

 workflow: ID, properties,

structure of tasks

 task: ID, reference to parent

workflow, inputs, outputs,

preconditions, effects, used

resources (documents, etc.)

Table 66 Data analysis of user requirements

