

www.ocopomo.org

OCOPOMO – Supporting policy development through conceptual designs

WS 3 on Open Government @ EGOV 2011, Delft (The Netherlands) , 2nd September 2011

Maria A. Wimmer and Sabrina Scherer wimmer | scherer@uni-koblenz.de

- Demands for ICT supported Governance and Policy Modelling and the OCOPOMO project
- Scenario building and analysis
- Integrating collaborative scenario texts with formal policy models
- Pilot cases, expected outcomes and innovation

Challenges in Policy Development

- Appropriate ICT support in policy planning not deployed widely
- Management of complexity in strategy and policy formation
- Development, visualisation and simulation of appropriate policy models usually done by experts
 - black-box approach
- Lack of open collaboration and therewith transparency in identifying the crucial features of complex social environments to inform policy models
- Online participation means not yet deployed widely in strategic decision making

Need for ICT Support in Policy Development

- Comprehensive IT solutions to support
 - \succ policy analysis, modelling and simulation
 - collaboration among
 - policy analysts and policy operators
 - wider stakeholder groups
 - general public
- ICT support along the whole policy development and stakeholder participation process
- Textual scenarios as a crucial but simple means
 - > to actively engage constituencies in policy development
 - > to enable transparency

Aims of OCOPOMO Project

- Support key stakeholders to participate in the processes of policy formulation
- Integrate methods and tools of scenario-based policy formation with formal policy modelling
- Develop an integrated ICT platform for efficient policy making
 - > Open collaboration along the policy process
 - > Engagement of wide stakeholder groups

OCOPOMO's Integrated Policy Process and Involved Actors

ICT Toolbox

Artefacts along the Process Phases

Transformation Needs

Demands for ICT supported Governance and Policy Modelling and the OCOPOMO project

Scenario building and analysis

- Integrating collaborative scenario texts with formal policy models
- Pilot cases, expected outcomes and innovation

Method for foresight according to Geschka (1978):

"systematic, participatory, future intelligence gathering and medium-to-long-term vision building process aimed at present-day decisions and mobilising joint actions"

Collaborative Scenario Building in OCOPOMO

Scenarios

- > Are textual description of a perceived view or understanding of a topic under discussion
- > Cover existing world status or mental model of stakeholders
- Alternative scenarios to describe different aspects and /or alternatives
- Different stakeholder groups develop different sets of scenarios independently
- Scenarios may be conflicting among stakeholder groups
- Scenarios may be extended and therewith advance an existing scenario (nesting scenarios)

Scenarios as instrument for stakeholder engagement

- Scenarios can be developed in a transparent and intersubjective manner
- Scenarios used as common reference point for formal policy modelling and as communication instrument
- Relevant information and data can be included in scenarios in an unbiased manner by stakeholders
- Assumptions on developments expressed through the scenarios are shared

Integrating Scenario and Formal Model

- Goals, scope and social processes specified by participating stakeholders
- Stakeholder-generated scenarios inform formal policy model design
 - > Key in model design: agent descriptions & if-then rules
 - Stakeholders see natural-language pseudo code
 - Enforces precision in use of language, expectations, goals
- Models produce simulations, which result in model-based scenarios
- Participating stakeholders evaluate model generated scenarios
 - > Surprises involve further investigation of model & scenarios
 - Iterations in developing formal policy models

- Demands for ICT supported Governance and Policy Modelling and the OCOPOMO project
- Scenario building and analysis
- Integrating collaborative scenario texts with formal policy models
- Pilot cases, expected outcomes and innovation

Technical tool to support the OCOPOMO process

Technical tool to support the process

DCOPOMA

Conceptual Description Tool (CD Tool):

Supports the Facilitator and the Policy Modeller in describing a conceptual model of the policy case.

Annotation Tool (AnnoTool)

- background information (e.g. statistics, stakeholder scenarios) are annotated and linked with relevant actors, objects and actions documented in a CCD file.
- Transformation Tool (TransTool):
 - supports the Policy Modeller in generating source code from the CCD

System Design

PROGRAMMI

What is meant with a Meta Model?

In this context:

Model that defines the components of the concept.

- Annotation Model:
 - Defines the components of the annotations
- CCD Meta Model:
 - Defines the components of a CCD
- DRAMS Meta Model
 - Defines the components of the DRAMS Simulation Engine
- CCD2DRAMS Meta Model
 - Defines the matching between components in CCD und DRAMS

CCD Meta Model

<values xmi:id="_OXPZp8PxEeCTKdubIHS_pw" name="owned"/>

</attributes> <attributes xmi:id="_OXPZpsPxEeCTKdubIHS_pw" name="tenure" description="If a private house is not rented it means that it is owr

```
<values xmi:id=" OXPZpcPxEeCTKdubIHS pw" name="false"/>
```

```
<values xmi:id="_OXPZpMPxEeCTKdubIHS_pw" name="true"/>
```

```
<attributes xmi:id="_OXPZo8PxEeCTKdubIHS_pw" name="is market">
```

</attributes>

```
<values xmi:id="_OXPZosPxEeCTKdubIHS_pw" name="false"/>
```

```
<values xmi:id=" OXPZocPxEeCTKdubIHS pw" name="true"/>
```

<objects xmi:id="_OXPZncPxEeCTKdubIHS_pw" name="Housing">
 <annotations xmi:type="org.ocopomo.annotation:FileAnnotation" xmi:id="_OXPZnsPxEeCTKdubIHS_pw" phrase="proportion of affordable
 <attributes xmi:id="_OXPZn8PxEeCTKdubIHS_pw" name="is affordable" description="A house is affordable if its price is in the lowe
 <annotations xmi:type="org.ocopomo.annotation:FileAnnotation" xmi:id="_OXPZn8PxEeCTKdubIHS_pw" phrase="The ratio of lower guar")</pre>

</actors>

```
<relations xmi:id="_OXPZnMPxEeCTKdubIHS_pw" name="household income" target="_OXPZ38PxEeCTKdubIHS_pw"/>
```

<actors xmi:id="_OXPZm8PxEeCTKdubIHS_pw" name="Household">

</actors>

</relations>

<relations xmi:id="_OXPZ18PxEeCTKdubIHS_pw" name="work with" target="_OXPZgsPxEeCTKdubIHS_pw">
 <annotations xmi:type="org.ocopomo.annotation:FileAnnotation" xmi:id="_OXPZmMPxEeCTKdubIHS_pw" phrase="The Mayor will work wit
 <annotations xmi:type="org.ocopomo.annotation:FileAnnotation" xmi:id="_OXPZmcPxEeCTKdubIHS_pw" phrase="These arrangements prov
 <annotations xmi:type="org.ocopomo.annotation:FileAnnotation" xmi:id="_OXPZmcPxEeCTKdubIHS_pw" phrase="These arrangements prov
 <annotations xmi:type="org.ocopomo.annotation:FileAnnotation" xmi:id="_OXPZmcPxEeCTKdubIHS_pw" phrase="These arrangements prov
 <annotations xmi:type="org.ocopomo.annotation:FileAnnotation" xmi:id="_OXPZmcPxEeCTKdubIHS_pw" phrase="HCA and its London boar")
</pre>

</relations>

<relations xmi:id="_OXPZ1MPxEeCTKdubIHS_pw" name="work with" target="_OXPZisPxEeCTKdubIHS_pw">
 <annotations xmi:type="org.ocopomo.annotation:FileAnnotation" xmi:id="_OXPZ1cPxEeCTKdubIHS_pw" phrase="The Mayor will work wit
 <annotations xmi:type="org.ocopomo.annotation:FileAnnotation" xmi:id="_OXPZ1sPxEeCTKdubIHS_pw" phrase="These arrangements prov

</relations>

<relations xmi:id="_OXPZkcPxEeCTKdubIHS_pw" name="prepare and publish" target="_OXPZzMPxEeCTKdubIHS_pw"> <annotations xmi:type="org.ocopomo.annotation:FileAnnotation" xmi:id="_OXPZksPxEeCTKdubIHS_pw" phrase="Mayor must prepare and <annotations xmi:type="org.ocopomo.annotation:FileAnnotation" xmi:id="_OXPZk8PxEeCTKdubIHS_pw" phrase=" Mayor responsible for

Example of a CCD File

23

Example for a CCD: Actor – Network - Diagram

CCD Tool in Action

Declarative agent modelling platform

- Equip agents with expert system capabilities: describing agent behaviour by declarative rules
- > Individual rule sets for each agent type (or even instance)
- Individual working memory for each agent instance
- Rule engine component for multi-agent simulation models
 - Distributed rule engine: agents behave in simulation runs autonomously according to their rule specifications
 - Simulation dynamics is generated by individual agent behaviour, together with interaction between agents (inter-agent communication)
- Java-based implementation
 - Full flexibility regarding interface definition for integration with OCOPOMO toolbox
 - Integrable with widely applied simulation tools (e.g. Repast)
 - Completely open source (including used external libraries)

DRAMS: core classes

2

Transformation: CCD2DRAMS

Some Implementation Details

CCD Tool:

- Editor: Implementation as Eclipse-Plugin
- Viewer: Will be implemented in RAP (Rich Ajax Applications)
- Different visualisations for domain models (CCDs)
- Modul based architecture => usable in other conceptual modeling approaches

DRAMS

- Declarative agent modelling platform
- Implementation in Java based on Repast
- Eclipse-Plugin available to support policy modellers

- Demands for ICT supported Governance and Policy Modelling and the OCOPOMO project
- Scenario building and analysis
- Integrating collaborative scenario texts with formal policy models
- Pilot cases, expected outcomes and innovation

- Renewable energy policy in Kosice Self-governing Region (KSR)
- Knowledge transfer in tourism and cultural industries in Campania Region of Italy
- Housing policy in London (additional case)

- OCOPOMO policy development process: integrated approach from narrative scenarios to formal policy models
 - Iterative process of identifying the parameters and features informing formal policy models
- Consistent conceptual description (CCD): Incorporating traceability in the iterative policy development process
- Open collaboration in policy development through integrated web 2.0 based e-participation toolbox
 - Enabling policy analysts, policy operators and wider stakeholder groups to work together collaboratively

Expected impact

- Contribution to strategic policies and to implement open government
- Contribution to transform government and administration to an open, effective and efficient participative governance (good governance principles)
- Provide new opportunities for open discourse among stakeholders of the policy domain and the policy experts
 - > in stakeholder-oriented scenario generation
 - \succ in evaluation of formal policy models
- Improve transparency and traceability in strategic decision making by involving different stakeholders in the participative process via the open collaboration platform

www.ocopomo.org

Many thanks for your attention!

- Demands for ICT supported Governance and Policy Modelling and the OCOPOMO project
- Scenario building and analysis
- Integrating collaborative scenario texts with formal policy models

DRAMS

Pilot cases, expected outcomes and innovation

- Modelling framework is RePast 3.1
- DRAMS is implemented in Java and we have an abstract agent class independent of modelling framework and an abstract model class for RePast 3.1
- Agent design implemented as fact templates and rules
- Some facts can be shadow facts (using JavaBeans)
- Facts can be added to fact bases directly from Java to support updating and post-execution processing.
- Categories of rules for decision-making and for endorsements

- Each agent has a rule engine, rulebase and fact base
- Agents can read and write to their own fact bases and communicate with other agents by writing on the other agents' fact bases
- Public knowledge is represented by facts on a global fact base open to every agent for writing and reading

Agent design: endorsements

- Endorsements are mnemonic tokens attached by agents to other agents (reliable, trustworthy, etc.) or to other objects such as plans or mental models (successful, unsuccessful)
- Endorsements have ordinal values used to rank agents or other objects such as plans or technologies.
- For efficiency, endorsement values calculated in Java and asserted as facts to agent's fact base

Declarative agent modelling platform

- Equip agents with expert system capabilities: describing agent behaviour by declarative rules
- Individual rule sets for each agent type (or even instance)
- Individual working memory for each agent instance
- Rule engine component for multi-agent simulation models
 - Distributed rule engine: agents behave in simulation runs autonomously according to their rule specifications
 - Simulation dynamics is generated by individual agent behaviour, together with interaction between agents (inter-agent communication)
- Java-based implementation
 - Full flexibility regarding interface definition for integration with OCOPOMO toolbox
 - Integrable with widely applied simulation tools (e.g. Repast)
 - Completely open source (including used external libraries)

DRAMS: components and integration

© OCOPOMO consortium, www.ocopomo.eu

DRAMS: rule engine

Software system, consisting of:

- A fact base, which stores information about the state of the world in the form of facts.
- A rule base, which stores rules describing how to process certain facts stored in fact bases. A rule consists of a condition part (called left-hand side, LHS) and an action part (called right-hand side, RHS).

An inference engine, which controls the inference process by selecting and processing the rules which can fire on the basis of certain conditions.

DRAMS is designed as a distributed, forward-chaining rule engine

Incorporates a data-drive rule scheduling mechanism to efficiently cope with intensely dynamic fact base contents (which is typical for simulation applications)

> ...

