
www.ocopomo.org

DRAMS

A Declarative Rule-based

Agent Modelling System

Ulf Lotzmann

ulf@uni-koblenz.de

ECMS Conference, Kraków (PL), 8th June 2011

© OCOPOMO consortium, www.ocopomo.eu2

 Overview

 What is a Declarative Rule Engine?

 What it is useful for?

 Components and integration

 How can Rule Engines used with Agent-based Systems?

 DRAMS Design

 What are the major design aspects of DRAMS?

 DRAMS User interface

 How is DRAMS used to create and run simulation models?

 How could the modelling process supported further?

 Outlook

 What are the main objectives for future work?

Agenda

© OCOPOMO consortium, www.ocopomo.eu3

 Rule Engine is a software system, consisting of:

 A fact base, which stores information about the state of the

world in the form of facts.

 A rule base, which stores rules representing knowledge

how to process certain facts stored in fact bases. A rule

consists of a condition part (called left-hand side, LHS)

and an action part (called right-hand side, RHS).

 An inference engine, which controls the inference process

by selecting and processing the rules which can fire on the

basis of certain conditions, in order to draw conclusions

from existing facts.

Overview: Declarative Rule Engine (1)

© OCOPOMO consortium, www.ocopomo.eu4

 Declarative Rule Engine

 Representation of rules quite close to natural language
descriptions

 “More realistic” representation of human approaches to
reasoning and problem solving

 Rule engines and agent-based models

Modelling agent reasoning via expert system

Other agent functionality with imperative code

 Problems with existing software products

Optimisation for static fact bases causes performance
bottleneck with dynamic simulation data

 Restricted agent autonomy due to shared rule engine

Overview: Declarative Rule Engine (2)

© OCOPOMO consortium, www.ocopomo.eu5

Simulation framework (Repast)

SimulationSchedule

Model

Agent

Experimentation front-end

Simulation framework (Repast)

Experimentation UI
- import configurations

- export simulation data

- control simulation runs

SimulationSchedule

Model

Agent

Experimentation front-end

Declarative rule engine (DRAMS) Simulation framework (Repast)

Experimentation UI
- import configurations

- export simulation data

- control simulation runs

FactBaseRuleBase

RuleEngine SimulationSchedule

Model

Agent

RuleSchedule

Modelling front-end Experimentation front-end

Declarative rule engine (DRAMS) Simulation framework (Repast)

Modelling UI

- definition of agent types

- definition of facts and rules

- visualisation of dependency

 graphs

Experimentation UI
- import configurations

- export simulation data

- control simulation runs

FactBaseRuleBase

RuleEngine SimulationSchedule

Model

Agent

RuleSchedule

Components and integration

© OCOPOMO consortium, www.ocopomo.eu6

 Basic idea

 Equip agents with expert system capabilities: describing
agent behaviour by declarative rules

 Individual rule sets for each agent type (or even instance)

 Individual working memory for each agent instance

 Rule engine component for multi-agent simulation
models

 Distributed rule engine: agents behave in simulation runs
autonomously according to their rule specifications

 Simulation dynamics is generated by individual agent
behaviour, together with interaction between agents (inter-
agent communication)

DRAMS: Design (1)

© OCOPOMO consortium, www.ocopomo.eu7

 Distributed rule engines

 Arbitrary number of agent types with type-specific rule

bases and initial fact base configurations

 Arbitrary number of instances (objects) for each agent type

with individual fact bases

One global rule engine, containing “world knowledge”

 Communication between agents

 Reading and writing access to the shared global fact base

 (Reading and) writing access to other agents’ fact bases

DRAMS: Design (2)

© OCOPOMO consortium, www.ocopomo.eu8

 Forward-chaining inference engine

 Incorporates a data-driven rule scheduling mechanism

 Efficiently cope with intensely dynamic fact base contents

 Based on dependency graphs

DRAMS: Design (3)

© OCOPOMO consortium, www.ocopomo.eu9

DRAMS: Core classes

DRAMS Core

Rules

Clause Classes

DataScheduler

RuleEngineManager RuleEngine

1

-ruleEngines

*

FactBase RuleBase

RuleSchedule

1

-factBase1

1

-currentSchedule1

FactBaseEntry

1
-facts*

Fact

1
-facts*

DependencyGraph

1

-dataDepGraph1

-ddg1

1

1

-ruleBase1

Rule

1
-rules*

AbstractClause«interface»

ILHSClause

«interface»

IRHSClause

1

*

1

*

«subsystem»

RHS clauses

«subsystem»

LHS clauses

ShadowFact

Event

Task

1

-schedule*

1

-tasks*

© OCOPOMO consortium, www.ocopomo.eu10

Access to rule engines:

 Instantiation of Fact or Rule classes within the tool source

code

 Reading/writing/editing of configuration files using a

specific language (OPS5 style, similar to JESS)

 Reading/writing of XML-based configuration files

 Interactively defining facts and rules with a GUI

Supporting the modelling process

 Calculation and displaying of dependency graphs

DRAMS User Interface

© OCOPOMO consortium, www.ocopomo.eu11

DRAMS UI: example model

© OCOPOMO consortium, www.ocopomo.eu12

DRAMS UI: modelling

rule = new Rule("Wolf to steak");

rule.addLHSClause(new RetrieveClause("(global::location (object ?wolf)(place \"fireplace\"))"));

rule.addLHSClause(new RetrieveClause("(global::movedTo (object \"kettle\") (place \"fireplace\"))"));

rule.addLHSClause(new RetrieveClause("($SELF$ (name ?name))"));

rule.addRHSClause(new ActionClauseAssert("(assert (global::dead (agent ?wolf)))"));

rule.addRHSClause(new ActionClauseAssert("(assert (eats (dinner ?wolf)))"));

rule.addRHSClause(new JavaActionClause("(print \"?wolf and the kettle have met at the fireplace\")"));

rule.addRHSClause(new JavaActionClause("(print \"?wolf is boiled to death in the kettle\")"));

rule.addRHSClause(new JavaActionClause("(print \"?name enjoys a wolf dinner\")"));

rb.addRule(rule);

(defrule Pig::"Wolf to steak"

(global::location (place "fireplace") (object ?wolf))

(global::movedTo (object "kettle") (place "fireplace"))

($SELF$ (name ?name))

=>

(assert (global::dead (agent ?wolf)))

(assert (eats (dinner ?wolf)))

(print "?wolf and the kettle have met at the fireplace")

(print "?wolf is boiled to death in the kettle")

(print "?name enjoys a wolf dinner")
)

When the wolf finally found the

hole in the chimney he crawled

down and KERSPLASH right

into that kettle of water and

that was the end of his [the

third little pigs] troubles with

the big bad wolf.

© OCOPOMO consortium, www.ocopomo.eu13

DRAMS UI: modelling

(defrule Pig::"Wolf to steak"

(global::location (place "fireplace") (object ?wolf))

(global::movedTo (object "kettle") (place "fireplace"))

($SELF$ (name ?name))

=>

(assert (global::dead (agent ?wolf)))

(assert (eats (dinner ?wolf)))

(print "?wolf and the kettle have met at the fireplace")

(print "?wolf is boiled to death in the kettle")

(print "?name enjoys a wolf dinner")
)

When the wolf finally found the

hole in the chimney he crawled

down and KERSPLASH right

into that kettle of water and

that was the end of his [the

third little pigs] troubles with

the big bad wolf.

© OCOPOMO consortium, www.ocopomo.eu14

*********************** SCHEDULE AT TIME 2.0*******************

-------- TASKS FOR TIME 2.0 ---------

---> TASK NO 5

[…]

* ACTION ActionRuleFire FOR RULE 'Wolf::attack house'

REASON:

NEW FACTS AVAILABLE FOR: GLOBAL::location

INSTANCES: Wolf (1);

* ACTION ActionRuleFire FOR RULE 'Pig::Change location'

REASON:

NEW FACTS AVAILABLE FOR: GLOBAL::movedTo

INSTANCES: Pig (1);

* ACTION ActionRuleFire FOR RULE 'Pig::Wolf to steak'

REASON:

NEW FACTS AVAILABLE FOR: GLOBAL::movedTo; GLOBAL::location

INSTANCES: Pig (1);

[…]

-------- TASKS FOR TIME 3.0 ---------

---> TASK NO 0

[…]

DRAMS UI: experimentation

© OCOPOMO consortium, www.ocopomo.eu15

*** 2.0 ***

[bigBadWolf.Move to brick house] "bigBadWolf ready to move"

[bigBadWolf.Move to brick house] "bigBadWolf has moved from the stick house to the brick house"

[bigBadWolf.Change location] "bigBadWolf is moving to house-2"

[bigBadWolf.Ask nicely] "bigBadWolf has asked pig-2 if he can enter his house of brick"

[bigBadWolf.target brick house] " bigBadWolf attacks the house of brick"

[bigBadWolf.failed attack; climb chimney] "bigBadWolf has attacked the house of brick, house-2"

[bigBadWolf.failed attack; climb chimney] "but house-2 has not collapsed!!"

[pig-2.Refuse wolf] "pig-2 has replied: Not by the hair on my chinny-chin-chin"

[bigBadWolf.Change location] "bigBadWolf is moving to fireplace"

[bigBadWolf.Change location] "bigBadWolf is moving to house-2"

[pig-2.Response to attack] "bigBadWolf is a Wolf moving to the fireplace"

[pig-2.Response to attack] "pig-2 is moving the kettle to the fireplace"

[pig-2.Wolf to steak] "bigBadWolf and the kettle have met at the fireplace"

[pig-2.Wolf to steak] "bigBadWolf is boiled to death in the kettle"

[pig-2.Wolf to steak] "pig-2 enjoys a wolf dinner"

Time to run: 0.486 seconds

*** 3.0 ***

[pig-2.Joy of the pig] "pig-2 dances for joy because no wolves remain alive"

Time to run: 0.026 seconds

DRAMS UI: experimentation

© OCOPOMO consortium, www.ocopomo.eu16

DRAMS UI: OCOPOMO policy

development process

Transform into

structured models:

Identify issues and

relations

2

Output format(s):

Structured models such

as „actor networks“,

rules and conditions,

rule-dependency graphs,

etc.

Develop

conceptual

descriptions

3

Develop

simulation

model

Outputs: Policy model in code,

rule dependency graph,

data dependency graph

5Run

Simulation

Outputs: Model-based

scenario text, statistical

data, log file, other

6

Evaluate/

Validate output7

Develop

evidence-

based, user

generated

scenarios

1

Output format: Text

4

Transform

into formal

model

Initiate policy case

and provide

background

documents

0 End-users, policy makers, policy analysts

Policy modelers

All stakeholders

Policy analysts

© OCOPOMO consortium, www.ocopomo.eu17

 DRAMS  DREAMS

 New functionality: plugin interface, meta rules, optimisation

 Java-based implementation: integrable with widely applied
simulation tools (e.g. Repast)

 Completely open source (including external libraries)

 OCOPOMO Toolbox

 CMS system (Alfresco)

 Several components: integrated (viewer, user and data
management) or linked via CMS data repository:

 Text annotation tool (Eclipse plugin)

 CCD tool (Eclipse plugin)

 DREAMS modeller (Eclipse plugin)

 Simulation tool (Repast)

Outlook

UNISOB

TUK

KSRSMA

www.ocopomo.org

Many thanks for your attention!

Project partners:

